
Helena T Hogberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1453751/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Future of 3D Brain Cultures in Developmental Neurotoxicity Testing. Frontiers in Toxicology, 2022, 4, 808620.	3.1	12
2	COVID-19 through Adverse Outcome Pathways: Building networks to better understand the disease – 3rd CIAO AOP Design Workshop. ALTEX: Alternatives To Animal Experimentation, 2022, , .	1.5	9
3	A human-derived 3D brain organoid model to study JC virus infection. Journal of NeuroVirology, 2022, 28, 17-26.	2.1	9
4	Human IPSC 3D brain model as a tool to study chemical-induced dopaminergic neuronal toxicity. Neurobiology of Disease, 2022, 169, 105719.	4.4	12
5	The future of Parkinson's disease research: A new paradigm of human-specific investigation is necessary… and possible. ALTEX: Alternatives To Animal Experimentation, 2022, , .	1.5	4
6	Organophosphorus flame retardants are developmental neurotoxicants in a rat primary brainsphere in vitro model. Archives of Toxicology, 2021, 95, 207-228.	4.2	35
7	Gene–Environment Interactions in Developmental Neurotoxicity: a Case Study of Synergy between Chlorpyrifos and CHD8 Knockout in Human BrainSpheres. Environmental Health Perspectives, 2021, 129, 77001.	6.0	41
8	Human Oligodendrocytes and Myelin In Vitro to Evaluate Developmental Neurotoxicity. International Journal of Molecular Sciences, 2021, 22, 7929.	4.1	17
9	Human IPSC-Derived Model to Study Myelin Disruption. International Journal of Molecular Sciences, 2021, 22, 9473.	4.1	28
10	Advances in 3D neuronal microphysiological systems: towards a functional nervous system on a chip. In Vitro Cellular and Developmental Biology - Animal, 2021, 57, 191-206.	1.5	30
11	Quantification of Oligodendrocytes and Myelin in Human iPSC-Derived 3D Brain Cell Cultures (BrainSpheres). Neuromethods, 2021, , 459-471.	0.3	0
12	COVID-19 – prime time for microphysiological systems, as illustrated for the brain. ALTEX: Alternatives To Animal Experimentation, 2021, 38, 535-549.	1.5	6
13	Beyond Cholinesterase Inhibition: Developmental Neurotoxicity of Organophosphate Ester Flame Retardants and Plasticizers. Environmental Health Perspectives, 2021, 129, 105001.	6.0	54
14	Guidance document on Good Cell and Tissue Culture Practice 2.0 (GCCP 2.0). ALTEX: Alternatives To Animal Experimentation, 2021, , .	1.5	18
15	Antidepressant Paroxetine Exerts Developmental Neurotoxicity in an iPSC-Derived 3D Human Brain Model. Frontiers in Cellular Neuroscience, 2020, 14, 25.	3.7	47
16	Biology-inspired microphysiological systems to advance medicines for patient benefit and animal welfare. ALTEX: Alternatives To Animal Experimentation, 2020, 37, 365-394.	1.5	123
17	Infectability of Human BrainSphere Neurons Suggests Neurotropism of SARS-CoV-2*. ALTEX: Alternatives To Animal Experimentation, 2020, 37, 665-671.	1.5	112
18	Suitability of 3D human brain spheroid models to distinguish toxic effects of gold and poly-lactic acid nanoparticles to assess biocompatibility for brain drug delivery. Particle and Fibre Toxicology, 2019, 16, 22.	6.2	67

HELENA T HOGBERG

#	Article	IF	CITATIONS
19	Toward good in vitro reporting standards. ALTEX: Alternatives To Animal Experimentation, 2019, 36, 3-17.	1.5	46
20	Rotenone exerts developmental neurotoxicity in a human brain spheroid model. Toxicology and Applied Pharmacology, 2018, 354, 101-114.	2.8	102
21	Consensus statement on the need for innovation, transition and implementation of developmental neurotoxicity (DNT) testing for regulatory purposes. Toxicology and Applied Pharmacology, 2018, 354, 3-6.	2.8	90
22	Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 306-352.	1.5	121
23	Microglia Increase Inflammatory Responses in iPSC-Derived Human BrainSpheres. Frontiers in Microbiology, 2018, 9, 2766.	3.5	88
24	Toxicity, recovery, and resilience in a 3D dopaminergic neuronal in vitro model exposed to rotenone. Archives of Toxicology, 2018, 92, 2587-2606.	4.2	27
25	Reference compounds for alternative test methods to indicate developmental neurotoxicity (DNT) potential of chemicals: example lists and criteria for their selection and use. ALTEX: Alternatives To Animal Experimentation, 2017, 34, 49-74.	1.5	94
26	Characterization of three human cell line models for highâ€ŧhroughput neuronal cytotoxicity screening. Journal of Applied Toxicology, 2017, 37, 167-180.	2.8	49
27	Explosive Blast Loading on Human 3D Aggregate Minibrains. Cellular and Molecular Neurobiology, 2017, 37, 1331-1334.	3.3	12
28	3D Differentiation of LUHMES Cell Line to Study Recovery and Delayed Neurotoxic Effects. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2017, 73, 11.23.1-11.23.28.	1.1	21
29	A human brain microphysiological system derived from induced pluripotent stem cells to study neurological diseases and toxicity. ALTEX: Alternatives To Animal Experimentation, 2017, 34, 362-376.	1.5	195
30	Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis. Lab on A Chip, 2016, 16, 4152-4162.	6.0	119
31	A LUHMES 3D dopaminergic neuronal model for neurotoxicity testing allowing long-term exposure and cellular resilience analysis. Archives of Toxicology, 2016, 90, 2725-2743.	4.2	90
32	International STakeholder NETwork (ISTNET): creating a developmental neurotoxicity (DNT) testing road map for regulatory purposes. Archives of Toxicology, 2015, 89, 269-287.	4.2	130
33	Quality assurance of metabolomics. ALTEX: Alternatives To Animal Experimentation, 2015, 32, 319-326.	1.5	30
34	State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX: Alternatives To Animal Experimentation, 2014, 31, 441-477.	1.5	166
35	Mapping the Human Toxome by Systems Toxicology. Basic and Clinical Pharmacology and Toxicology, 2014, 115, 24-31.	2.5	41
36	Developmental neurotoxicity – Challenges in the 21st Century and In Vitro Opportunities. ALTEX: Alternatives To Animal Experimentation, 2014, 31, 129-56.	1.5	103

HELENA T HOGBERG

#	Article	IF	CITATIONS
37	Biological and medical applications of a brain-on-a-chip. Experimental Biology and Medicine, 2014, 239, 1096-1107.	2.4	103
38	In Vitro Developmental Neurotoxicity Testing: Relevant Models and Endpoints. Methods in Pharmacology and Toxicology, 2014, , 125-146.	0.2	1
39	Pathways of Toxicity. ALTEX: Alternatives To Animal Experimentation, 2014, 31, 53-61.	1.5	75
40	Review: Toxicometabolomics. Journal of Applied Toxicology, 2013, 33, 1365-1383.	2.8	148
41	Toward a 3D model of human brain development for studying gene/environment interactions. Stem Cell Research and Therapy, 2013, 4, S4.	5.5	68
42	Metabolomics Reveals Metabolic Alterations by Intrauterine Growth Restriction in the Fetal Rabbit Brain. PLoS ONE, 2013, 8, e64545.	2.5	40
43	Metabolomics in toxicology and preclinical research. ALTEX: Alternatives To Animal Experimentation, 2013, 30, 209-225.	1.5	164
44	Application of micro-electrode arrays (MEAs) as an emerging technology for developmental neurotoxicity: Evaluation of domoic acid-induced effects in primary cultures of rat cortical neurons. NeuroToxicology, 2011, 32, 158-168.	3.0	123
45	Domoic Acid-Induced Neurotoxicity Is Mainly Mediated by the AMPA/KA Receptor: Comparison between Immature and Mature Primary Cultures of Neurons and Glial Cells from Rat Cerebellum. Journal of Toxicology, 2011, 2011, 1-14.	3.0	24
46	l² ₁ -Adrenergic receptors increase UCP1 in human MADS brown adipocytes and rescue cold-acclimated l² ₃ -adrenergic receptor-knockout mice via nonshivering thermogenesis. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E1108-E1118.	3.5	55
47	Nanotoxicology: "the end of the beginning―– Signs on the roadmap to a strategy for assuring the safe application and use of nanomaterials. ALTEX: Alternatives To Animal Experimentation, 2011, 28, 236-241.	1.5	18
48	Relevance of in vitro neurotoxicity testing for regulatory requirements: Challenges to be considered. Neurotoxicology and Teratology, 2010, 32, 36-41.	2.4	89
49	mRNA Expression is a Relevant Tool to Identify Developmental Neurotoxicants Using an In Vitro Approach. Toxicological Sciences, 2010, 113, 95-115.	3.1	91
50	In vitro developmental neurotoxicity (DNT) testing: Relevant models and endpoints. NeuroToxicology, 2010, 31, 545-554.	3.0	97
51	Gene expression as a sensitive endpoint to evaluate cell differentiation and maturation of the developing central nervous system in primary cultures of rat cerebellar granule cells (CGCs) exposed to pesticides. Toxicology and Applied Pharmacology, 2009, 235, 268-286.	2.8	71
52	A Human Stem Cell-Based Model for Identifying Adverse Effects of Organic and Inorganic Chemicals on the Developing Nervous System. Stem Cells, 2009, 27, 2591-2601.	3.2	116
53	Temperature Dependence of O ₂ Consumption; Opposite Effects of Leptin and Etomoxir on Respiratory Quotient in Mice. Obesity, 2006, 14, 673-682.	3.0	34