Edwin Cheung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1453541/publications.pdf Version: 2024-02-01

FOWIN CHEUNC

#	Article	IF	CITATIONS
1	A Hashing-Based Framework for Enhancing Cluster Delineation of High-Dimensional Single-Cell Profiles. Phenomics, 2022, 2, 323-335.	2.9	3
2	<scp>TRIM33</scp> drives prostate tumor growth by stabilizing androgen receptor from Skp2â€mediated degradation. EMBO Reports, 2022, 23, .	4.5	9
3	Three-dimensional folding dynamics of the Xenopus tropicalis genome. Nature Genetics, 2021, 53, 1075-1087.	21.4	30
4	Single-cell analysis reveals androgen receptor regulates the ER-to-Colgi trafficking pathway with CREB3L2 to drive prostate cancer progression. Oncogene, 2021, 40, 6479-6493.	5.9	10
5	Multiplex Singleâ€Cell Analysis of Cancer Cells Enables Unbiased Uncovering Subsets Associated with Cancer Relapse: Heterogeneity of Multidrug Resistance in Precursor Bâ€ALL. ChemMedChem, 2021, , .	3.2	2
6	Anti-inflammatory mechanisms of the novel cytokine interleukin-38 in allergic asthma. Cellular and Molecular Immunology, 2020, 17, 631-646.	10.5	72
7	Elevated Exogenous Pyruvate Potentiates Mesodermal Differentiation through Metabolic Modulation and AMPK/mTOR Pathway in Human Embryonic Stem Cells. Stem Cell Reports, 2019, 13, 338-351.	4.8	35
8	An AR-ERG transcriptional signature defined by long-range chromatin interactomes in prostate cancer cells. Genome Research, 2019, 29, 223-235.	5.5	46
9	Combined use of arginase and dichloroacetate exhibits anti-proliferative effects in triple negative breast cancer cells. Journal of Pharmacy and Pharmacology, 2019, 71, 306-315.	2.4	17
10	Histone H3.3K27M Mobilizes Multiple Cancer/Testis (CT) Antigens in Pediatric Glioma. Molecular Cancer Research, 2018, 16, 623-633.	3.4	10
11	GLUT12 promotes prostate cancer cell growth and is regulated by androgens and CaMKK2 signaling. Endocrine-Related Cancer, 2018, 25, 453-469.	3.1	48
12	Single-Cell Transcriptome Analysis Reveals Estrogen Signaling Coordinately Augments One-Carbon, Polyamine, and Purine Synthesis in Breast Cancer. Cell Reports, 2018, 25, 2285-2298.e4.	6.4	39
13	Long non-coding RNA <i>GAS5</i> and <i>ZFAS1</i> are prognostic markers involved in translation targeted by <i>miR-940</i> in prostate cancer. Oncotarget, 2018, 9, 1048-1062.	1.8	31
14	Identification of a Wells–Dawson polyoxometalate-based AP-2γ inhibitor with pro-apoptotic activity. Biochemical Journal, 2018, 475, 1965-1977.	3.7	7
15	KM-express: an integrated online patient survival and gene expression analysis tool for the identification and functional characterization of prognostic markers in breast and prostate cancers. Database: the Journal of Biological Databases and Curation, 2018, 2018, .	3.0	22
16	Scalable Generation of Mesenchymal Stem Cells from Human Embryonic Stem Cells in 3D. International Journal of Biological Sciences, 2018, 14, 1196-1210.	6.4	31
17	Novel IncRNA <i>LINC00844</i> Regulates Prostate Cancer Cell Migration and Invasion through AR Signaling. Molecular Cancer Research, 2018, 16, 1865-1878.	3.4	79
18	GUAVA: A Graphical User Interface for the Analysis and Visualization of ATAC-seq Data. Frontiers in Genetics, 2018, 9, 250.	2.3	15

Edwin Cheung

#	Article	IF	CITATIONS
19	Transcriptional regulation of core autophagy and lysosomal genes by the androgen receptor promotes prostate cancer progression. Autophagy, 2017, 13, 506-521.	9.1	88
20	Icaritin suppresses development of neuroendocrine differentiation of prostate cancer through inhibition of IL-6/STAT3 and Aurora kinase A pathways in TRAMP mice. Carcinogenesis, 2016, 37, 701-711.	2.8	28
21	Histone H2A T120 Phosphorylation Promotes Oncogenic Transformation via Upregulation of Cyclin D1. Molecular Cell, 2016, 64, 176-188.	9.7	51
22	A novel prostate cancer therapeutic strategy using icaritin-activated arylhydrocarbon-receptor to co-target androgen receptor and its splice variants. Carcinogenesis, 2015, 36, 757-768.	2.8	47
23	Identification of a Novel Coregulator, SH3YL1, That Interacts With the Androgen Receptor N-Terminus. Molecular Endocrinology, 2015, 29, 1426-1439.	3.7	22
24	Androgen receptor co-regulatory networks in castration-resistant prostate cancer. Endocrine-Related Cancer, 2014, 21, R1-R11.	3.1	19
25	Exploring the utility of organo-polyoxometalate hybrids to inhibit SOX transcription factors. Cell Regeneration, 2014, 3, 3:10.	2.6	11
26	Estrogen receptor-mediated long-range chromatin interactions and transcription in breast cancer. Molecular and Cellular Endocrinology, 2014, 382, 624-632.	3.2	35
27	Studying Protein–DNA Complexes Using Gold Nanoparticles by Exploiting Particle Aggregation, Refractive Index Change, and Fluorescence Quenching and Enhancement Principles. Plasmonics, 2014, 9, 753-763.	3.4	10
28	Fast Screening of Ligand-Protein Interactions based on Ligand-Induced Protein Stabilization of Gold Nanoparticles. Analytical Chemistry, 2014, 86, 2361-2370.	6.5	23
29	Hybrid assembly of DNA-coated gold nanoparticles with water soluble conjugated polymers for studying protein–DNA interaction and ligand inhibition. RSC Advances, 2014, 4, 8883.	3.6	11
30	Studying forkhead box protein A1–DNA interaction and ligand inhibition using gold nanoparticles, electrophoretic mobility shift assay, and fluorescence anisotropy. Analytical Biochemistry, 2014, 448, 95-104.	2.4	6
31	Sequencing the transcriptional network of androgen receptor in prostate cancer. Cancer Letters, 2013, 340, 254-260.	7.2	15
32	Simultaneously Learning DNA Motif Along with Its Position and Sequence Rank Preferences Through Expectation Maximization Algorithm. Journal of Computational Biology, 2013, 20, 237-248.	1.6	10
33	Antisense now makes sense: dual modulation of androgen-dependent transcription by CTBP1-AS. EMBO Journal, 2013, 32, 1653-1654.	7.8	10
34	A transcriptional repressor co-regulatory network governing androgen response in prostate cancers. EMBO Journal, 2012, 31, 2810-2823.	7.8	139
35	Integration of Regulatory Networks by NKX3-1 Promotes Androgen-Dependent Prostate Cancer Survival. Molecular and Cellular Biology, 2012, 32, 399-414.	2.3	165
36	Extensive Promoter-Centered Chromatin Interactions Provide a Topological Basis for Transcription Regulation. Cell, 2012, 148, 84-98.	28.9	1,096

EDWIN CHEUNG

#	Article	IF	CITATIONS
37	Determination of transcription factor binding. Nature Genetics, 2011, 43, 11-12.	21.4	3
38	AP-2Î ³ regulates oestrogen receptor-mediated long-range chromatin interaction and gene transcription. EMBO Journal, 2011, 30, 2569-2581.	7.8	144
39	Multiple Sequence-Specific DNA-Binding Proteins Mediate Estrogen Receptor Signaling through a Tethering Pathway. Molecular Endocrinology, 2011, 25, 564-574.	3.7	45
40	Integrative model of genomic factors for determining binding site selection by estrogen receptorâ€Î±. Molecular Systems Biology, 2010, 6, 456.	7.2	139
41	Location analysis for the estrogen receptor-α reveals binding to diverse ERE sequences and widespread binding within repetitive DNA elements. Nucleic Acids Research, 2010, 38, 2355-2368.	14.5	54
42	Genomic Analyses of Hormone Signaling and Gene Regulation. Annual Review of Physiology, 2010, 72, 191-218.	13.1	78
43	Inherent Signals in Sequencing-Based Chromatin-ImmunoPrecipitation Control Libraries. PLoS ONE, 2009, 4, e5241.	2.5	40
44	An oestrogen-receptor-α-bound human chromatin interactome. Nature, 2009, 462, 58-64.	27.8	1,537
45	Regulation of Estrogen Receptor-mediated Long Range Transcription via Evolutionarily Conserved Distal Response Elements. Journal of Biological Chemistry, 2008, 283, 32977-32988.	3.4	89
46	Whole-Genome Cartography of Estrogen Receptor α Binding Sites. PLoS Genetics, 2007, 3, e87.	3.5	400
47	MYBBP1a is a Novel Repressor of NF-κB. Journal of Molecular Biology, 2007, 366, 725-736.	4.2	64
48	Smads orchestrate specific histone modifications and chromatin remodeling to activate transcription. EMBO Journal, 2006, 25, 4490-4502.	7.8	126
49	Altered pharmacology and distinct coactivator usage for estrogen receptor-dependent transcription through activating protein-1. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 559-564.	7.1	63
50	Chromatin exposes intrinsic differences in the transcriptional activities of estrogen receptors alpha and beta. EMBO Journal, 2003, 22, 600-611.	7.8	39
51	A Novel Arabidopsis Acetyltransferase Interacts with the Geminivirus Movement Protein NSP. Plant Cell, 2003, 15, 1605-1618.	6.6	77
52	Histone H1 Represses Estrogen Receptor α Transcriptional Activity by Selectively Inhibiting Receptor-Mediated Transcription Initiation. Molecular and Cellular Biology, 2002, 22, 2463-2471.	2.3	35
53	Organization and characterization of the two yeast ribosomal protein YL19 genes. Current Genetics, 1996, 30, 273-278.	1.7	9
54	Nucleotide sequence and characterization of theSaccharomyces cerevisiae RPL19A gene encoding a homolog of the mammalian ribosomal protein 119. Yeast, 1995, 11, 383-389.	1.7	5