Denis C Bauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1453379/publications.pdf

Version: 2024-02-01

60 papers

3,103 citations

257450 24 h-index 52 g-index

71 all docs

71 docs citations

times ranked

71

7119 citing authors

#	Article	lF	Citations
1	Isling: A Tool for Detecting Integration of Wild-Type Viruses and Clinical Vectors. Journal of Molecular Biology, 2022, 434, 167408.	4.2	2
2	A bioinformatic pipeline for simulating viral integration data. Data in Brief, 2022, 42, 108161.	1.0	1
3	Data-driven platform for identifying variants of interest in COVID-19 virus. Computational and Structural Biotechnology Journal, 2022, 20, 2942-2950.	4.1	2
4	Evidence for polygenic and oligogenic basis of Australian sporadic amyotrophic lateral sclerosis. Journal of Medical Genetics, 2021, 58, 87-95.	3.2	48
5	Domain-specific introduction to machine learning terminology, pitfalls and opportunities in CRISPR-based gene editing. Briefings in Bioinformatics, 2021, 22, 308-314.	6.5	12
6	Interoperable medical data: The missing link for understanding COVIDâ€19. Transboundary and Emerging Diseases, 2021, 68, 1753-1760.	3.0	21
7	INSIDER: alignment-free detection of foreign DNA sequences. Computational and Structural Biotechnology Journal, 2021, 19, 3810-3816.	4.1	2
8	GOANA: A Universal High-Throughput Web Service for Assessing and Comparing the Outcome and Efficiency of Genome Editing Experiments. CRISPR Journal, 2021, 4, 243-252.	2.9	3
9	Genetic analysis of GLT8D1 and ARPP21 in Australian familial and sporadic amyotrophic lateral sclerosis. Neurobiology of Aging, 2021, 101, 297.e9-297.e11.	3.1	6
10	Genetic Analysis of Tryptophan Metabolism Genes in Sporadic Amyotrophic Lateral Sclerosis. Frontiers in Immunology, 2021, 12, 701550.	4.8	8
11	Fast and accurate exhaustive higher-order epistasis search with BitEpi. Scientific Reports, 2021, 11, 15923.	3.3	11
12	Optimized nickase- and nuclease-based prime editing in human and mouse cells. Nucleic Acids Research, 2021, 49, 10785-10795.	14.5	47
13	A comparative study of multi-omics integration tools for cancer driver gene identification and tumour subtyping. Briefings in Bioinformatics, 2020, 21, 1920-1936.	6.5	51
14	VariantSpark: Cloud-based machine learning for association study of complex phenotype and large-scale genomic data. GigaScience, 2020, 9, .	6.4	10
15	A Navigation System for Base Editing: Are We There Yet?. CRISPR Journal, 2020, 3, 224-225.	2.9	O
16	Identity by descent analysis identifies founder events and links SOD1 familial and sporadic ALS cases. Npj Genomic Medicine, 2020, 5, 32.	3.8	20
17	Genetic and immunopathological analysis of CHCHD10 in Australian amyotrophic lateral sclerosis and frontotemporal dementia and transgenic TDP-43 mice. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 162-171.	1.9	8
18	Supporting pandemic response using genomics and bioinformatics: A case study on the emergent SARSâ€CoVâ€2 outbreak. Transboundary and Emerging Diseases, 2020, 67, 1453-1462.	3.0	46

#	Article	IF	CITATIONS
19	Host Porphobilinogen Deaminase Deficiency Confers Malaria Resistance in Plasmodium chabaudi but Not in Plasmodium berghei or Plasmodium falciparum During Intraerythrocytic Growth. Frontiers in Cellular and Infection Microbiology, 2020, 10, 464.	3.9	2
20	Artificial Intelligence and Machine Learning in Bioinformatics. , 2019, , 272-286.		11
21	VARSCOT: variant-aware detection and scoring enables sensitive and personalized off-target detection for CRISPR-Cas9. BMC Biotechnology, 2019, 19, 40.	3.3	9
22	Methylome and transcriptome maps of human visceral and subcutaneous adipocytes reveal key epigenetic differences at developmental genes. Scientific Reports, 2019, 9, 9511.	3.3	24
23	Monozygotic twins and triplets discordant for amyotrophic lateral sclerosis display differential methylation and gene expression. Scientific Reports, 2019, 9, 8254.	3.3	36
24	Unlocking HDR-mediated nucleotide editing by identifying high-efficiency target sites using machine learning. Scientific Reports, 2019, 9, 2788.	3.3	31
25	Evaluation of computational programs to predict HLA genotypes from genomic sequencing data. Briefings in Bioinformatics, 2018, 19, bbw097.	6.5	60
26	High Activity Target-Site Identification Using Phenotypic Independent CRISPR-Cas9 Core Functionality. CRISPR Journal, 2018, 1, 182-190.	2.9	43
27	Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 2018, 97, 1268-1283.e6.	8.1	517
28	The Current State and Future of CRISPR-Cas9 gRNA Design Tools. Frontiers in Pharmacology, 2018, 9, 749.	3.5	103
29	Genetic correlation between amyotrophic lateral sclerosis and schizophrenia. Nature Communications, 2017, 8, 14774.	12.8	114
30	Ankyrin-1 Gene Exhibits Allelic Heterogeneity in Conferring Protection Against Malaria. G3: Genes, Genomes, Genetics, 2017, 7, 3133-3144.	1.8	3
31	Genetic and Pathological Assessment of hnRNPA1, hnRNPA2/B1, and hnRNPA3 in Familial and Sporadic Amyotrophic Lateral Sclerosis. Neurodegenerative Diseases, 2017, 17, 304-312.	1.4	27
32	Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations. Genome Research, 2016, 26, 719-731.	5.5	312
33	Adenosine monophosphate deaminase 3 activation shortens erythrocyte half-life and provides malaria resistance in mice. Blood, 2016, 128, 1290-1301.	1.4	32
34	A novel ENU-induced ankyrin-1 mutation impairs parasite invasion and increases erythrocyte clearance during malaria infection in mice. Scientific Reports, 2016, 6, 37197.	3.3	8
35	Targeted nextâ€generation sequencing of 22 mismatch repair genes identifies Lynch syndrome families. Cancer Medicine, 2016, 5, 929-941.	2.8	25
36	VariantSpark: population scale clustering of genotype information. BMC Genomics, 2015, 16, 1052.	2.8	24

#	Article	IF	CITATIONS
37	Genome-wide analysis of chemically induced mutations in mouse in phenotype-driven screens. BMC Genomics, 2015, 16, 866.	2.8	21
38	Cpipe: a shared variant detection pipeline designed for diagnostic settings. Genome Medicine, 2015, 7, 68.	8.2	78
39	Early life events influence whole-of-life metabolic health via gut microflora and gut permeability. Critical Reviews in Microbiology, 2015, 41, 326-340.	6.1	97
40	Gut permeability, its interaction with gut microflora and effects on metabolic health are mediated by the lymphatics system, liver and bile acid. Future Microbiology, 2015, 10, 1339-1353.	2.0	39
41	Mutation analysis of MATR3 in Australian familial amyotrophic lateral sclerosis. Neurobiology of Aging, 2015, 36, 1602.e1-1602.e2.	3.1	13
42	A Comparative Study of Techniques for Differential Expression Analysis on RNA-Seq Data. PLoS ONE, 2014, 9, e103207.	2.5	195
43	NGSANE: a lightweight production informatics framework for high-throughput data analysis. Bioinformatics, 2014, 30, 1471-1472.	4.1	22
44	Genomics and personalised whole-of-life healthcare. Trends in Molecular Medicine, 2014, 20, 479-486.	6.7	18
45	Blue: correcting sequencing errors using consensus and context. Bioinformatics, 2014, 30, 2723-2732.	4.1	68
46	Triplex-Inspector: an analysis tool for triplex-mediated targeting of genomic loci. Bioinformatics, 2013, 29, 1895-1897.	4.1	29
47	Abstract LB-237: Human and microbial transcriptomics from lean and obese individuals with colorectal cancer: A comparison of Total and Poly A RNA sequencing from clinical samples , 2013, , .		0
48	Hybridization-based reconstruction of small non-coding RNA transcripts from deep sequencing data. Nucleic Acids Research, 2012, 40, 7633-7643.	14.5	10
49	Triplexator: Detecting nucleic acid triple helices in genomic and transcriptomic data. Genome Research, 2012, 22, 1372-1381.	5.5	181
50	Sorting the nuclear proteome. Bioinformatics, 2011, 27, i7-i14.	4.1	18
51	Predicting SUMOylation sites in developmental transcription factors of Drosophila melanogaster. Neurocomputing, 2010, 73, 2300-2307.	5. 9	2
52	Dual-functioning transcription factors in the developmental gene network of Drosophila melanogaster. BMC Bioinformatics, 2010, 11, 366.	2.6	19
53	Assigning roles to DNA regulatory motifs using comparative genomics. Bioinformatics, 2010, 26, 860-866.	4.1	155
54	Optimizing static thermodynamic models of transcriptional regulation. Bioinformatics, 2009, 25, 1640-1646.	4.1	7

#	Article	IF	Citations
55	The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nature Genetics, 2009, 41, 553-562.	21.4	408
56	Studying the functional conservation of cis-regulatory modules and their transcriptional output. BMC Bioinformatics, 2008, 9, 220.	2.6	9
57	STREAM: Static Thermodynamic REgulAtory Model of transcription. Bioinformatics, 2008, 24, 2544-2545.	4.1	2
58	Predicting SUMOylation Sites. Lecture Notes in Computer Science, 2008, , 28-40.	1.3	4
59	STAR: predicting recombination sites from amino acid sequence. BMC Bioinformatics, 2006, 7, 437.	2.6	6
60	Predicting Structural Disruption of Proteins Caused by Crossover. , 2005, , .		0