
Brian R Calvi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/145330/publications.pdf Version: 2024-02-01

RDIAN R CALVI

#	Article	IF	CITATIONS
1	Drosophila p53 isoforms have overlapping and distinct functions in germline genome integrity and oocyte quality control. ELife, 2022, 11, .	6.0	7
2	Harmonizing model organism data in the Alliance of Genome Resources. Genetics, 2022, 220, .	2.9	52
3	FlyBase: a guided tour of highlighted features. Genetics, 2022, 220, .	2.9	281
4	FlyBase: updates to the <i>Drosophila melanogaster</i> knowledge base. Nucleic Acids Research, 2021, 49, D899-D907.	14.5	374
5	Alliance of Genome Resources Portal: unified model organism research platform. Nucleic Acids Research, 2020, 48, D650-D658.	14.5	145
6	Identification and Characterization of Breakpoints and Mutations on <i>Drosophila melanogaster</i> Balancer Chromosomes. G3: Genes, Genomes, Genetics, 2020, 10, 4271-4285.	1.8	12
7	A Cyclin A—Myb-MuvB—Aurora B network regulates the choice between mitotic cycles and polyploid endoreplication cycles. PLoS Genetics, 2019, 15, e1008253.	3.5	30
8	An RNAi Screen for Genes Required for Growth of <i>Drosophila</i> Wing Tissue. G3: Genes, Genomes, Genetics, 2019, 9, 3087-3100.	1.8	10
9	<i>Drosophila</i> p53 integrates the antagonism between autophagy and apoptosis in response to stress. Autophagy, 2019, 15, 771-784.	9.1	31
10	FlyBase 2.0: the next generation. Nucleic Acids Research, 2019, 47, D759-D765.	14.5	697
11	Model organism data evolving in support of translational medicine. Lab Animal, 2018, 47, 277-289.	0.4	35
12	Incompatibility between mitochondrial and nuclear genomes during oogenesis results in ovarian failure and embryonic lethality. Development (Cambridge), 2017, 144, 2490-2503.	2.5	38
13	Rapid DNA Synthesis During Early <i>Drosophila</i> Embryogenesis Is Sensitive to Maternal Humpty Dumpty Protein Function. Genetics, 2017, 207, 935-947.	2.9	9
14	The Histone Variant H3.3 Is Enriched at Drosophila Amplicon Origins but Does Not Mark Them for Activation. G3: Genes, Genomes, Genetics, 2016, 6, 1661-1671.	1.8	7
15	Different cell cycle modifications repress apoptosis at different steps independent of developmental signaling in <i>Drosophila</i> . Molecular Biology of the Cell, 2016, 27, 1885-1897.	2.1	26
16	Transient endoreplication down-regulates the kinesin-14 HSET and contributes to genomic instability. Molecular Biology of the Cell, 2016, 27, 2911-2923.	2.1	27
17	DNA sequence templates adjacent nucleosome and ORC sites at gene amplification origins in <i>Drosophila</i> . Nucleic Acids Research, 2015, 43, 8746-8761.	14.5	15
18	HBO1. Cell Cycle, 2014, 13, 2322-2322.	2.6	5

BRIAN R CALVI

#	Article	IF	CITATIONS
19	Low Levels of p53 Protein and Chromatin Silencing of p53 Target Genes Repress Apoptosis in Drosophila Endocycling Cells. PLoS Genetics, 2014, 10, e1004581.	3.5	57
20	Induction of endocycles represses apoptosis independently of differentiation and predisposes cells to genome instability. Development (Cambridge), 2014, 141, 112-123.	2.5	76
21	Making big cells: One size does not fit all. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9621-9622.	7.1	19
22	Analysis of model replication origins in <i>Drosophila</i> reveals new aspects of the chromatin landscape and its relationship to origin activity and the prereplicative complex. Molecular Biology of the Cell, 2012, 23, 200-212.	2.1	34
23	The histone acetyltransferases CBP and Chameau integrate developmental and DNA replication programs in Drosophila ovarian follicle cells. Development (Cambridge), 2012, 139, 3880-3890.	2.5	32
24	Dampened activity of E2F1–DP and Myb–MuvB transcription factors in <i>Drosophila</i> endocycling cells. Journal of Cell Science, 2010, 123, 4095-4106.	2.0	44
25	Endocycling cells do not apoptose in response to DNA rereplication genotoxic stress. Genes and Development, 2008, 22, 3158-3171.	5.9	117
26	Developmental and Cell Cycle Regulation of the Drosophila Histone Locus Body. Molecular Biology of the Cell, 2007, 18, 2491-2502.	2.1	71
27	humpty dumpty Is Required for Developmental DNA Amplification and Cell Proliferation in Drosophila. Current Biology, 2005, 15, 755-759.	3.9	32
28	Fluorescent BrdU Labeling and Nuclear Flow Sorting of the Drosophila Ovary. , 2004, 247, 203-214.		24
29	Drosophila double-parked is sufficient to induce re-replication during development and is regulated by cyclin E/CDK2. Development (Cambridge), 2004, 131, 4807-4818.	2.5	84
30	Chromatin regulates origin activity in Drosophila follicle cells. Nature, 2004, 430, 372-376.	27.8	247
31	DrosophilaMinichromosome Maintenance 6 Is Required for Chorion Gene Amplification and Genomic Replication. Molecular Biology of the Cell, 2002, 13, 607-620.	2.1	69
32	The nuclear location and chromatin organization of active chorion amplification origins. Chromosoma, 2001, 110, 159-172.	2.2	27
33	Chorion Gene Amplification in Drosophila: A Model for Metazoan Origins of DNA Replication and S-Phase Control. Methods, 1999, 18, 407-417.	3.8	76