
Howard C Nusbaum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1452748/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emotional intelligence predicts wise reasoning. Journal of Positive Psychology, 2023, 18, 106-120.	4.0	9
2	Going Beyond Rote Auditory Learning: Neural Patterns of Generalized Auditory Learning. Journal of Cognitive Neuroscience, 2022, 34, 425-444.	2.3	2
3	Absolute Pitch. , 2022, , 10-15.		0
4	Talker familiarity and the accommodation of talker variability. Attention, Perception, and Psychophysics, 2021, 83, 1842-1860.	1.3	19
5	Individual differences in human frequency-following response predict pitch labeling ability. Scientific Reports, 2021, 11, 14290.	3.3	3
6	Expertise Modulates Neural Stimulus-Tracking. ENeuro, 2021, 8, ENEURO.0065-21.2021.	1.9	0
7	Cortical mechanisms of talker normalization in fluent sentences. Brain and Language, 2020, 201, 104722.	1.6	6
8	How to make Artificial Wisdom possible. International Psychogeriatrics, 2020, 32, 909-911.	1.0	2
9	The Science of Wisdom in a Polarized World: Knowns and Unknowns. Psychological Inquiry, 2020, 31, 103-133.	0.9	142
10	Shaping perceptual learning of synthetic speech through feedback. Psychonomic Bulletin and Review, 2020, 27, 1043-1051.	2.8	4
11	Revisiting discrete versus continuous models of human behavior: The case of absolute pitch. PLoS ONE, 2020, 15, e0244308.	2.5	4
12	Understanding Theories of Practical Wisdom. International Handbooks in Business Ethics, 2020, , 1-15.	0.1	2
13	Revisiting discrete versus continuous models of human behavior: The case of absolute pitch. , 2020, 15, e0244308.		0
14	Revisiting discrete versus continuous models of human behavior: The case of absolute pitch. , 2020, 15, e0244308.		0
15	Revisiting discrete versus continuous models of human behavior: The case of absolute pitch. , 2020, 15, e0244308.		0
16	Revisiting discrete versus continuous models of human behavior: The case of absolute pitch. , 2020, 15, e0244308.		0
17	The New Science of Practical Wisdom. Perspectives in Biology and Medicine, 2019, 62, 216-236.	0.5	26
18	The Breakdown of Civic Virtues and the Problem of Hate Speech: Is There Wisdom in Freedom of Speech?. , 2019, , 111-142.		4

#	Article	IF	CITATIONS
19	Absolute pitch can be learned by some adults. PLoS ONE, 2019, 14, e0223047.	2.5	11
20	The Aesthetic Preference for Nature Sounds Depends on Sound Object Recognition. Cognitive Science, 2019, 43, e12734.	1.7	22
21	The promise of environmental neuroscience. Nature Human Behaviour, 2019, 3, 414-417.	12.0	38
22	Emerging Opportunities for Advancing Cognitive Neuroscience. Trends in Cognitive Sciences, 2019, 23, 363-365.	7.8	11
23	Of cricket chirps and car horns: The effect of nature sounds on cognitive performance. Psychonomic Bulletin and Review, 2019, 26, 522-530.	2.8	53
24	Hearing sounds as words: Neural responses to environmental sounds in the context of fluent speech. Brain and Language, 2018, 179, 51-61.	1.6	1
25	Consolidating skill learning through sleep. Current Opinion in Behavioral Sciences, 2018, 20, 174-182.	3.9	7
26	Understanding environmental sounds in sentence context. Cognition, 2018, 172, 134-143.	2.2	5
27	Loving-kindness language exposure leads to changes in sensitivity to imagined pain. Journal of Positive Psychology, 2018, 13, 429-433.	4.0	8
28	Long-term pitch memory for music recordings is related to auditory working memory precision. Quarterly Journal of Experimental Psychology, 2018, 71, 879-891.	1.1	16
29	Individual differences in absolute pitch performance: Contributions of working memory, musical expertise, and tonal language background. Acta Psychologica, 2018, 191, 251-260.	1.5	12
30	Sleep-dependent reconsolidation after memory destabilization in starlings. Nature Communications, 2018, 9, 3093.	12.8	14
31	Differential development of retroactive and proactive interference during post-learning wakefulness. Learning and Memory, 2018, 25, 325-329.	1.3	4
32	A note by any other name: Intonation context rapidly changes absolute note judgments Journal of Experimental Psychology: Human Perception and Performance, 2018, 44, 1268-1282.	0.9	12
33	Absolute Pitch. , 2018, , 1-6.		0
34	Telling in-tune from out-of-tune: widespread evidence for implicit absolute intonation. Psychonomic Bulletin and Review, 2017, 24, 481-488.	2.8	11
35	Visual cortex entrains to sign language. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6352-6357.	7.1	39
36	Perceptual Plasticity for Auditory Object Recognition. Frontiers in Psychology, 2017, 8, 781.	2.1	16

#	Article	IF	CITATIONS
37	Understanding Sound. Psychology of Learning and Motivation - Advances in Research and Theory, 2017, 67, 53-93.	1.1	5
38	Understanding Speech in the Context of Variability. , 2016, , 195-208.		9
39	What the [bleep]? Enhanced absolute pitch memory for a 1000 Hz sine tone. Cognition, 2016, 154, 139-150.	2.2	13
40	Trading experience modulates anterior insula to reduce the endowment effect. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9238-9243.	7.1	24
41	Prototypes are Key Heuristic Information in Insight Problem Solving. Creativity Research Journal, 2016, 28, 67-77.	2.6	17
42	The Relationship between Mental and Somatic Practices and Wisdom. PLoS ONE, 2016, 11, e0149369.	2.5	15
43	The effects of acoustic variability on absolute pitch categorization: Evidence of contextual tuning. Journal of the Acoustical Society of America, 2015, 138, 436-446.	1.1	15
44	Auditory working memory predicts individual differences in absolute pitch learning. Cognition, 2015, 140, 95-110.	2.2	40
45	Variability in Vowel Production within and between Days. PLoS ONE, 2015, 10, e0136791.	2.5	19
46	Sleep Consolidation of Musical Competence. Music Perception, 2015, 33, 163-178.	1.1	6
47	Auditory category knowledge in experts and novices. Frontiers in Neuroscience, 2014, 8, 260.	2.8	8
48	Speech perception as an active cognitive process. Frontiers in Systems Neuroscience, 2014, 8, 35.	2.5	134
49	Talker variability in audio-visual speech perception. Frontiers in Psychology, 2014, 5, 698.	2.1	18
50	Music can elicit a visual motion aftereffect. Attention, Perception, and Psychophysics, 2013, 75, 1039-1047.	1.3	9
51	Brain mechanisms of valuable scientific problem finding inspired by heuristic knowledge. Experimental Brain Research, 2013, 228, 437-443.	1.5	12
52	Sleep restores loss of generalized but not rote learning of synthetic speech. Cognition, 2013, 128, 280-286.	2.2	28
53	"Lord, Teach Us to Pray― Prayer Practice Affects Cognitive Processing. Journal of Cognition and Culture, 2013, 13, 159-177.	0.4	49
54	Absolute Pitch May Not Be So Absolute. Psychological Science, 2013, 24, 1496-1502.	3.3	33

#	Article	IF	CITATIONS
55	Sleep Consolidation of Interfering Auditory Memories in Starlings. Psychological Science, 2013, 24, 439-447.	3.3	36
56	Conveying Movement in Music and Prosody. PLoS ONE, 2013, 8, e76744.	2.5	3
57	Imagined actions aren't just weak actions: Task variability promotes skill learning in physical practice but not in mental practice Journal of Experimental Psychology: Learning Memory and Cognition, 2012, 38, 1759-1764.	0.9	15
58	Neural correlates of wishful thinking. Social Cognitive and Affective Neuroscience, 2012, 7, 991-1000.	3.0	31
59	Emotional language processing: How mood affects integration processes during discourse comprehension. Brain and Language, 2012, 122, 199-210.	1.6	67
60	Film music influences how viewers relate to movie characters Psychology of Aesthetics, Creativity, and the Arts, 2011, 5, 146-153.	1.3	49
61	Language and Communication. , 2011, , .		0
62	Auditory-Motor Expertise Alters "Speech Selectivity―in Professional Musicians and Actors. Cerebral Cortex, 2011, 21, 938-948.	2.9	76
63	When Less is Heard than Meets the Ear: Change Deafness in a Telephone Conversation. Quarterly Journal of Experimental Psychology, 2011, 64, 1442-1456.	1.1	43
64	The role of personal experience in the neural processing of action-related language. Brain and Language, 2010, 112, 214-222.	1.6	66
65	The Absorption Hypothesis: Learning to Hear God in Evangelical Christianity. American Anthropologist, 2010, 112, 66-78.	1.4	116
66	Sleep-Dependent Consolidation of Auditory Discrimination Learning in Adult Starlings. Journal of Neuroscience, 2010, 30, 609-613.	3.6	47
67	Simple stimuli, simple strategies. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, E65-E65.	7.1	8
68	Consolidating the Effects of Waking and Sleep on Motor-Sequence Learning. Journal of Neuroscience, 2010, 30, 13977-13982.	3.6	135
69	Detection of deception using fMRI: Better than chance, but well below perfection. Social Neuroscience, 2009, 4, 528-538.	1.3	40
70	Reduced false memory after sleep. Learning and Memory, 2009, 16, 509-513.	1.3	74
71	Animal comparative studies should be part of linguistics. Behavioral and Brain Sciences, 2009, 32, 458-459.	0.7	3
72	Task-dependent organization of brain regions active during rest. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10841-10846.	7.1	168

#	Article	IF	CITATIONS
73	Gestures Orchestrate Brain Networks for Language Understanding. Current Biology, 2009, 19, 661-667.	3.9	109
74	Effects of intelligibility on working memory demand for speech perception. Attention, Perception, and Psychophysics, 2009, 71, 1360-1374.	1.3	62
75	Language: the perspective from organismal biology. Trends in Cognitive Sciences, 2009, 13, 505-510.	7.8	31
76	In the Eye of the Beholder: Individual Differences in Perceived Social Isolation Predict Regional Brain Activation to Social Stimuli. Journal of Cognitive Neuroscience, 2009, 21, 83-92.	2.3	250
77	Moving to the Speed of Sound: Context Modulation of the Effect of Acoustic Properties of Speech. Cognitive Science, 2008, 32, 1063-1074.	1.7	14
78	Neuroimaging as a New Tool in the Toolbox of Psychological Science. Current Directions in Psychological Science, 2008, 17, 62-67.	5.3	91
79	Improving the analysis, storage and sharing of neuroimaging data using relational databases and distributed computing. NeuroImage, 2008, 39, 693-706.	4.2	33
80	Consolidation of sensorimotor learning during sleep. Learning and Memory, 2008, 15, 815-819.	1.3	41
81	Sports experience changes the neural processing of action language. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13269-13273.	7.1	177
82	Effects of Training on the Acoustic–Phonetic Representation of Synthetic Speech. Journal of Speech, Language, and Hearing Research, 2007, 50, 1445-1465.	1.6	44
83	Brain Networks Subserving the Extraction of Sentence Information and Its Encoding to Memory. Cerebral Cortex, 2007, 17, 2899-2913.	2.9	70
84	Hearing Lips and Seeing Voices: How Cortical Areas Supporting Speech Production Mediate Audiovisual Speech Perception. Cerebral Cortex, 2007, 17, 2387-2399.	2.9	341
85	Acoustic differences, listener expectations, and the perceptual accommodation of talker variability Journal of Experimental Psychology: Human Perception and Performance, 2007, 33, 391-409.	0.9	145
86	Abstract Coding of Audiovisual Speech: BeyondÂSensory Representation. Neuron, 2007, 56, 1116-1126.	8.1	113
87	What Are You Feeling? Using Functional Magnetic Resonance Imaging to Assess the Modulation of Sensory and Affective Responses during Empathy for Pain. PLoS ONE, 2007, 2, e1292.	2.5	352
88	Speech-associated gestures, Broca's area, and the human mirror system. Brain and Language, 2007, 101, 260-277.	1.6	259
89	The sound of motion in spoken language: Visual information conveyed by acoustic properties of speech. Cognition, 2007, 105, 681-690.	2.2	60

200 Lending a helping hand to hearing: another motor theory of speech perception. , 2006, , 250-286.

39

#	Article	IF	CITATIONS
91	Recursive syntactic pattern learning by songbirds. Nature, 2006, 440, 1204-1207.	27.8	634
92	Analog acoustic expression in speech communication. Journal of Memory and Language, 2006, 55, 167-177.	2.1	182
93	Repetition Suppression for Spoken Sentences and the Effect of Task Demands. Journal of Cognitive Neuroscience, 2006, 18, 2013-2029.	2.3	57
94	Listening to talking faces: motor cortical activation during speech perception. NeuroImage, 2005, 25, 76-89.	4.2	320
95	Dialogue processing: Automatic alignment or controlled understanding?. Behavioral and Brain Sciences, 2004, 27, 210-211.	0.7	1
96	Neural Bases of Talker Normalization. Journal of Cognitive Neuroscience, 2004, 16, 1173-1184.	2.3	89
97	On the neurobiological investigation of language understanding in context. Brain and Language, 2004, 89, 300-311.	1.6	35
98	Probing the mental representation of gesture: Is handwaving spatial?. Journal of Memory and Language, 2004, 50, 395-407.	2.1	195
99	Consolidation during sleep of perceptual learning of spoken language. Nature, 2003, 425, 614-616.	27.8	416
100	Just because you're imaging the brain doesn't mean you can stop using your head: A primer and set of first principles Journal of Personality and Social Psychology, 2003, 85, 650-661.	2.8	132
101	Selective attention and the acquisition of new phonetic categories Journal of Experimental Psychology: Human Perception and Performance, 2002, 28, 349-366.	0.9	115
102	Selective attention and the acquisition of new phonetic categories Journal of Experimental Psychology: Human Perception and Performance, 2002, 28, 349-366.	0.9	106
103	Explaining Math: Gesturing Lightens the Load. Psychological Science, 2001, 12, 516-522.	3.3	600
104	Effects of training on attention to acoustic cues. Perception & Psychophysics, 2000, 62, 1668-1680.	2.3	159
105	The Effect of Lexical Complexity on Intelligibility. International Journal of Speech Technology, 1999, 3, 15-25.	2.2	7
106	Evaluating the Quality of Synthetic Speech. , 1999, , 63-97.		10
107	Hemispheric Involvement in the Perception of Syntactic Prosody Is Dynamically Dependent on Task Demands. Brain and Language, 1998, 65, 313-332.	1.6	29
108	Measuring the naturalness of synthetic speech. International Journal of Speech Technology, 1997, 2, 7-19.	2.2	13

#	Article	IF	CITATIONS
109	Measuring the naturalness of synthetic speech. International Journal of Speech Technology, 1995, 1, 7-19.	2.2	21
110	Processing interactions between segmental and suprasegmental information in native speakers of English and Mandarin Chinese. Perception & Psychophysics, 1993, 53, 157-165.	2.3	72
111	Transitions in learning: Evidence for simultaneously activated strategies Journal of Experimental Psychology: Human Perception and Performance, 1993, 19, 92-107.	0.9	36
112	PRONOUNCE: a program for pronunciation by analogy. Computer Speech and Language, 1991, 5, 55-64.	4.3	55
113	Perceptual learning of vowels in a neuromorphic system. Computer Speech and Language, 1990, 4, 79-126.	4.3	0
114	Perceptual learning of synthetic speech produced by rule Journal of Experimental Psychology: Learning Memory and Cognition, 1988, 14, 421-433.	0.9	130
115	Phonological priming in auditory word recognition Journal of Experimental Psychology: Learning Memory and Cognition, 1987, 13, 64-75.	0.9	76
116	Automatic measurement of speech recognition performance: a comparison of six speaker-dependent recognition devices. Computer Speech and Language, 1987, 2, 87-108.	4.3	8
117	Developing Methods for Assessing the Performance of Speech Synthesis and Recognition Systems. Proceedings of the Human Factors Society Annual Meeting, 1986, 30, 1344-1348.	0.1	2
118	The Role of Attention and Active Processing in Speech Perception. , 1986, , 113-157.		32
119	Speech perception, word recognition and the structure of the lexicon. Speech Communication, 1985, 4, 75-95.	2.8	201
120	Effects of Speech Rate and Pitch Contour on the Perception of Synthetic Speech. Human Factors, 1985, 27, 701-712.	3.5	43
121	Some Effects of Training on the Perception of Synthetic Speech. Human Factors, 1985, 27, 395-408.	3.5	197
122	Constraints on the perception of synthetic speech generated by rule. Behavior Research Methods, 1985, 17, 235-242.	1.3	57
123	Possible raechanisms of duplex perception: "chirp―identification venus dichotlc fusion. Perception & Psychophysics, 1984, 35, 94-101.	2.3	9
124	The role of "chirp―identification in duplex perception. Perception & Psychophysics, 1983, 33, 323-332.	2.3	24
125	Auditory and phonetic processes in place perception for stops. Perception & Psychophysics, 1983, 34, 560-568.	2.3	21
126	The role of second formant transitions in the stop-semivowel distinction. Perception & Psychophysics, 1981, 29, 121-128.	2.3	24

#	Article	IF	CITATIONS
127	Contextual effects in vowel perception II: Evidence for two processing mechanisms. Perception & Psychophysics, 1980, 27, 421-434.	2.3	34
128	Contextual effects in vowel perception I: Anchor-induced contrast effects. Perception & Psychophysics, 1979, 25, 292-302.	2.3	38
129	Effects of intelligibility on working memory demand for speech perception. , 0, .		1