Fang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1452719/publications.pdf Version: 2024-02-01

EANICLUU

#	Article	IF	CITATIONS
1	Rapid MR relaxometry using deep learning: An overview of current techniques and emerging trends. NMR in Biomedicine, 2022, 35, e4416.	2.8	29
2	Ultrashort echo time (UTE) imaging reveals a shift in bound water that is sensitive to sub-clinical tendinopathy in older adults. Skeletal Radiology, 2021, 50, 107-113.	2.0	12
3	Bi-component T2 mapping correlates with articular cartilage material properties. Journal of Biomechanics, 2021, 116, 110215.	2.1	2
4	Magnetizationâ€prepared GRASP MRI for rapid 3D T1 mapping and fat/waterâ€separated T1 mapping. Magnetic Resonance in Medicine, 2021, 86, 97-114.	3.0	26
5	Magnetic resonance parameter mapping using modelâ€guided selfâ€supervised deep learning. Magnetic Resonance in Medicine, 2021, 85, 3211-3226.	3.0	41
6	GRASPâ€Pro: imProving GRASP DCEâ€MRI through selfâ€calibrating subspaceâ€modeling and contrast phase automation. Magnetic Resonance in Medicine, 2020, 83, 94-108.	3.0	38
7	Deep Learning for Lesion Detection, Progression, and Prediction of Musculoskeletal Disease. Journal of Magnetic Resonance Imaging, 2020, 52, 1607-1619.	3.4	55
8	High-performance rapid MR parameter mapping using model-based deep adversarial learning. Magnetic Resonance Imaging, 2020, 74, 152-160.	1.8	19
9	Artificial intelligence–enabled rapid diagnosis of patients with COVID-19. Nature Medicine, 2020, 26, 1224-1228.	30.7	757
10	Deep learning risk assessment models for predicting progression of radiographic medial joint space loss over a 48-MONTH follow-up period. Osteoarthritis and Cartilage, 2020, 28, 428-437.	1.3	37
11	Improving Quantitative Magnetic Resonance Imaging Using Deep Learning. Seminars in Musculoskeletal Radiology, 2020, 24, 451-459.	0.7	5
12	SUSAN: segment unannotated image structure using adversarial network. Magnetic Resonance in Medicine, 2019, 81, 3330-3345.	3.0	48
13	SANTIS: Samplingâ€Augmented Neural neTwork with Incoherent Structure for MR image reconstruction. Magnetic Resonance in Medicine, 2019, 82, 1890-1904.	3.0	70
14	Fully Automated Diagnosis of Anterior Cruciate Ligament Tears on Knee MR Images by Using Deep Learning. Radiology: Artificial Intelligence, 2019, 1, 180091.	5.8	94
15	Preoperative MRI Shoulder Findings Associated with Clinical Outcome 1 Year after Rotator Cuff Repair. Radiology, 2019, 291, 722-729.	7.3	14
16	<scp>MR</scp> â€based treatment planning in radiation therapy using a deep learning approach. Journal of Applied Clinical Medical Physics, 2019, 20, 105-114.	1.9	47
17	Resolving estimation uncertainties of chemical shift encoded fatâ€water imaging using magnetization transfer effect. Magnetic Resonance in Medicine, 2019, 82, 202-212.	3.0	6
18	MANTIS: Modelâ€Augmented Neural neTwork with Incoherent <i>k</i> â€space Sampling for efficient MR parameter mapping. Magnetic Resonance in Medicine, 2019, 82, 174-188.	3.0	77

Fang Liu

#	Article	IF	CITATIONS
19	Deep convolutional neural networks with multiplane consensus labeling for lung function quantification using UTE proton MRI. Journal of Magnetic Resonance Imaging, 2019, 50, 1169-1181.	3.4	22
20	Deep Learning in Musculoskeletal Imaging. Advances in Clinical Radiology, 2019, 1, 83-94.	0.2	9
21	Bayesian convolutional neural network based MRI brain extraction on nonhuman primates. NeuroImage, 2018, 175, 32-44.	4.2	56
22	Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging. Magnetic Resonance in Medicine, 2018, 79, 2379-2391.	3.0	240
23	Pulmonary ventilation imaging in asthma and cystic fibrosis using oxygenâ€enhanced 3D radial ultrashort echo time MRI. Journal of Magnetic Resonance Imaging, 2018, 47, 1287-1297.	3.4	45
24	Rapid dualâ€echo ramped hybrid encoding <scp>MR</scp> â€based attenuation correction (d <scp>RHEâ€MRAC</scp>) for <scp>PET/MR</scp> . Magnetic Resonance in Medicine, 2018, 79, 2912-2922.	3.0	23
25	Deep Learning MR Imaging–based Attenuation Correction for PET/MR Imaging. Radiology, 2018, 286, 676-684.	7.3	315
26	A deep learning approach for 18F-FDG PET attenuation correction. EJNMMI Physics, 2018, 5, 24.	2.7	88
27	Maturation-Related Changes in T2 Relaxation Times of Cartilage and Meniscus of the Pediatric Knee Joint at 3 T. American Journal of Roentgenology, 2018, 211, 1369-1375.	2.2	9
28	Feasibility of Deep Learning–Based PET/MR Attenuation Correction in the Pelvis Using Only Diagnostic MR Images. Tomography, 2018, 4, 138-147.	1.8	42
29	Juvenile Osteochondritis Dissecans: Cartilage T2 Mapping of Stable Medial Femoral Condyle Lesions. Radiology, 2018, 288, 536-543.	7.3	19
30	Deep convolutional neural network for segmentation of knee joint anatomy. Magnetic Resonance in Medicine, 2018, 80, 2759-2770.	3.0	148
31	Technical Note: Deep learning based <scp>MRAC</scp> using rapid ultrashort echo time imaging. Medical Physics, 2018, 45, 3697-3704.	3.0	49
32	Deep Learning Approach for Evaluating Knee MR Images: Achieving High Diagnostic Performance for Cartilage Lesion Detection. Radiology, 2018, 289, 160-169.	7.3	193
33	Oxytocin differentially alters resting state functional connectivity between amygdala subregions and emotional control networks: Inverse correlation with depressive traits. NeuroImage, 2017, 149, 458-467.	4.2	69
34	Bicomponent ultrashort echo time analysis for assessment of patients with patellar tendinopathy. Journal of Magnetic Resonance Imaging, 2017, 46, 1441-1447.	3.4	45
35	MRI characteristics of torn and untorn post-operative menisci. Skeletal Radiology, 2017, 46, 1353-1360.	2.0	17
36	Knee imaging: Rapid threeâ€dimensional fast spinâ€echo using compressed sensing. Journal of Magnetic Resonance Imaging, 2017, 45, 1712-1722.	3.4	63

Fang Liu

#	Article	IF	CITATIONS
37	Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange Tissue Model. IEEE Transactions on Medical Imaging, 2017, 36, 527-537.	8.9	67
38	Assessment of different fitting methods for in-vivo bi-component T2* analysis of human patellar tendon in magnetic resonance imaging. Muscles, Ligaments and Tendons Journal, 2017, 7, 163.	0.3	16
39	Multicomponent <i>T</i> ₂ analysis of articular cartilage with synovial fluid partial volume correction. Journal of Magnetic Resonance Imaging, 2016, 43, 1140-1147.	3.4	7
40	American Society of Biomechanics Clinical Biomechanics Award 2015: MRI assessments of cartilage mechanics, morphology and composition following reconstruction of the anterior cruciate ligament. Clinical Biomechanics, 2016, 34, 38-44.	1.2	19
41	Proximal forearm extensor muscle strain is reduced when driving nails using a shock-controlled hammer. Clinical Biomechanics, 2016, 38, 22-28.	1.2	1
42	Rapid multicomponent relaxometry in steady state with correction of magnetization transfer effects. Magnetic Resonance in Medicine, 2016, 75, 1423-1433.	3.0	25
43	Rapid in vivo multicomponent <i>T</i> ₂ mapping of human knee menisci. Journal of Magnetic Resonance Imaging, 2015, 42, 1321-1328.	3.4	6
44	Articular Cartilage of the Human Knee Joint: In Vivo Multicomponent T2 Analysis at 3.0 T. Radiology, 2015, 277, 477-488.	7.3	28
45	Rapid multicomponent T2 analysis of the articular cartilage of the human knee joint at 3.0T. Journal of Magnetic Resonance Imaging, 2014, 39, 1191-1197.	3.4	36
46	Optimization of Time-to-peak Analysis for Differentiating Malignant and Benign Breast Lesions with Dynamic Contrast-Enhanced MRI. Academic Radiology, 2011, 18, 694-704.	2.5	8