
Gennady L Burygin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1452390/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lipopolysaccharide and flagellin of Azospirillum brasilense Sp7 influence callus morphogenesis and plant regeneration in wheat. World Journal of Microbiology and Biotechnology, 2022, 38, 62.	3.6	3
2	Improved Production of High-Quality Potato Seeds in Aeroponics with Plant-Growth-Promoting Rhizobacteria. Potato Research, 2021, 64, 55-66.	2.7	12
3	Morphogenesis of wheat calluses treated with Azospirillum lipopolysaccharides. Plant Cell, Tissue and Organ Culture, 2021, 147, 147-155.	2.3	4
4	Structure and genetics of the O-antigen of Enterobacter cloacae K7 containing di-N-acetylpseudaminic acid. Carbohydrate Research, 2021, 508, 108392.	2.3	1
5	Unsymmetrical Trifluoromethyl Methoxyphenyl β-Diketones: Effect of the Position of Methoxy Group and Coordination at Cu(II) on Biological Activity. Molecules, 2021, 26, 6466.	3.8	5
6	Structure, gene cluster of the O antigen and biological activity of the lipopolysaccharide from the rhizospheric bacterium Ochrobactrum cytisi IPA7.2. International Journal of Biological Macromolecules, 2020, 154, 1375-1381.	7.5	8
7	Flagellin of polar flagellum from Azospirillum brasilense Sp245: Isolation, structure, and biological activity. International Journal of Biological Macromolecules, 2020, 147, 1221-1227.	7.5	7
8	Rhizobacteria Inoculation Effects on Phytohormone Status of Potato Microclones Cultivated In Vitro under Osmotic Stress. Biomolecules, 2020, 10, 1231.	4.0	22
9	Plasmid gene AZOBR_p60126 impacts biosynthesis of lipopolysaccharide II and swarming motility in <i>Azospirillum brasilense</i> Sp245. Journal of Basic Microbiology, 2020, 60, 613-623.	3.3	7
10	Sensor Based on PZT Ceramic Resonator with Lateral Electric Field for Immunodetectionof Bacteria in the Conducting Aquatic Environment â€. Sensors, 2020, 20, 3003.	3.8	4
11	Plasmid gene for putative integral membrane protein affects formation of lipopolysaccharide and motility in Azospirillum brasilense Sp245. Folia Microbiologica, 2020, 65, 963-972.	2.3	1
12	Structural investigation and comparative cytotoxic activity of water-soluble polysaccharides from fruit bodies of the medicinal fungus quinine conk. Phytochemistry, 2020, 175, 112313.	2.9	12
13	Preparation and in vivo evaluation of glyco-gold nanoparticles carrying synthetic mycobacterial hexaarabinofuranoside. Beilstein Journal of Nanotechnology, 2020, 11, 480-493.	2.8	16
14	Effectiveness of inoculation of in vitro-grown potato microplants with rhizosphere bacteria of the genus Azospirillum. Plant Cell, Tissue and Organ Culture, 2020, 141, 351-359.	2.3	26
15	Study of the effect of associative rhizobacterial strains on the formation of spring durum wheat productivity. BIO Web of Conferences, 2020, 23, 03012.	0.2	0
16	Prospects for the Use of Gold Nanoparticles to Increase the Sensitivity of an Acoustic Sensor in the Detection of Microbial Cells. Ultrasound in Medicine and Biology, 2020, 46, 1727-1737.	1.5	6
17	Obtaining and the specificity characterization of antibodies against the plant signaling peptide CLE41/44 by gold nanoparticle conjugates. , 2020, , .		0
18	Ochrobactrum cytisi IPA7.2 promotes growth of potato microplants and is resistant to abiotic stress. World Journal of Microbiology and Biotechnology, 2019, 35, 55.	3.6	29

GENNADY L BURYGIN

#	Article	IF	CITATIONS
19	Acoustic sensor for detection and identification of microbial cells directly in the liquid phase. , 2019, , .		Ο
20	Functioning of plant-bacterial associations under osmotic stress in vitro. World Journal of Microbiology and Biotechnology, 2019, 35, 195.	3.6	9
21	Synthesis of novel spirooxindole-pyrrolidines and evaluation of their cytotoxic activity. Pharmacological Reports, 2019, 71, 357-360.	3.3	9
22	Comparison of Cytotoxic Activity of Compounds from the Benzimidazolequinazoline and Pyridopyrimidine Series. Izvestiya of Saratov University New Series Series: Chemistry Biology Ecology, 2019, 19, 396-400.	0.1	0
23	Sensor based on the slot acoustic wave for the non-contact analysis of the bacterial cells – Antibody binding in the conducting suspensions. Sensors and Actuators B: Chemical, 2018, 268, 217-222.	7.8	15
24	Effect of bacterial lipopolysaccharides on morphogenetic activity in wheat somatic calluses. World Journal of Microbiology and Biotechnology, 2018, 34, 3.	3.6	10
25	Plasmid AZOBR_p1-borne <i>fabG</i> gene for putative 3-oxoacyl-[acyl-carrier protein] reductase is essential for proper assembly and work of the dual flagellar system in the alphaproteobacterium <i>Azospirillum brasilense</i> Sp245. Canadian Journal of Microbiology, 2018, 64, 107-118.	1.7	8
26	Characterization of Carbohydrate-Containing Components of Azospirillum brasilense Sp245 Biofilms. Microbiology, 2018, 87, 610-620.	1.2	6
27	Analysis of the microbial cell-Ab binding in buffer solution by the piezoelectric resonator. Analytical Biochemistry, 2018, 554, 53-60.	2.4	8
28	PLANT RESPONSES TO FLAGELLINS OF PLANT GROWTH-PROMOTING RHIZOBACTERIA. , 2018, , .		0
29	Pectobacterium atrosepticum exopolysaccharides: identification, molecular structure, formation under stress and in planta conditions. Glycobiology, 2017, 27, 1016-1026.	2.5	21
30	Synthesis and Cytotoxic Activity of Arylsubstituted Tetrazolocyclanopyrimidines. Pharmaceutical Chemistry Journal, 2017, 51, 756-759.	0.8	0
31	A BACTERIAL ISOLATE FROM THE RHIZOSPHERE OF POTATO (Solanum tuberosum L.) IDENTIFIED AS Ochrobactrum lupini IPA7.2. Sel'skokhozyaistvennaya Biologiya, 2017, 52, 105-115.	0.3	6
32	Use of Azospirillum brasilense Sp245 to Increase the Efficacy of Clonal Micropropagation of Cretaceous Catchfly (Silene cretacea Fisch. ex Spreng). Biotekhnologiya, 2017, , 72-79.	0.1	4
33	Syntheses of O-antigen polysaccharide fragments of nitrogen-fixing rhizobacteria of the genus Azospirillum. Russian Chemical Bulletin, 2016, 65, 1448-1463.	1.5	2
34	Synthesis and antimicrobial activity of gold nanoparticle conjugates with cefotaxime. , 2016, , .		1
35	The use and development of the dynamic light-scattering method to investigate supramolecular structures in aqueous solutions of bacterial lipopolysaccharides. Biophysics (Russian Federation), 2016, 61, 547-557.	0.7	4
36	Assessing the efficacy of co-inoculation of wheat seedlings with the associative bacteria <i>Paenibacillus polymyxa</i> 1465 and <i>Azospirillum brasilense</i> Sp245. Canadian Journal of Microbiology, 2016, 62, 279-285.	1.7	19

GENNADY L BURYGIN

#	Article	IF	CITATIONS
37	Immunochemical detection of Azospirilla in soil with genus-specific antibodies. Microbiology, 2015, 84, 263-267.	1.2	2
38	Improved potato microclonal reproduction with the plant growth-promoting rhizobacteria Azospirillum. Agronomy for Sustainable Development, 2015, 35, 1167-1174.	5.3	28
39	Electro-optical Study of the Exposure of <i>Azospirillum brasilense</i> Carbohydrate Epitopes. Journal of Immunoassay and Immunochemistry, 2015, 36, 379-386.	1.1	1
40	Serological relationships of azospirilla revealed by their motility patterns in the presence of antibodies to lipopolysaccharides. Microbiology, 2014, 83, 102-109.	1.2	1
41	Characterization of the lipopolysaccharides of serogroup II Azospirillum strains. Microbiology, 2014, 83, 326-334.	1.2	5
42	Isolation and characterization of a glyphosate-degrading rhizosphere strain, Enterobacter cloacae K7. Microbiological Research, 2014, 169, 99-105.	5.3	100
43	Immunochemical Characterization of the Capsular Polysaccharide of Azospirillum irakense KBC1. Current Microbiology, 2013, 67, 234-239.	2.2	7
44	PREPARATION OF MINIANTIBODIES TOAzospirillum brasilenseSp245 SURFACE ANTIGENS AND THEIR USE FOR BACTERIAL DETECTION. Journal of Immunoassay and Immunochemistry, 2012, 33, 115-127.	1.1	8
45	Identification of an O-linked repetitive glycan chain of the polar flagellum flagellin of Azospirillum brasilense Sp7. Carbohydrate Research, 2012, 361, 127-132.	2.3	23
46	Effect of Azospirillum brasilense Sp245 lipopolysaccharide on the functional activity of wheat root meristematic cells. Plant and Soil, 2011, 346, 181-188.	3.7	18
47	On the role of carbohydrate-protein highly selective interactions in the biological activity of glycoconjugates: Crifola frondosa (Fr.) S.F. Cray lectin binding to specific and non-specific antibodies. World Journal of Microbiology and Biotechnology, 2011, 27, 1579-1585.	3.6	1
48	Biofilm Formation by Paenibacillus polymyxa Strains Differing in the Production and Rheological Properties of Their Exopolysaccharides. Current Microbiology, 2011, 62, 1554-1559.	2.2	32
49	Use of ELISA with Antiexopolysaccharide Antibodies to Evaluate Wheat-Root Colonization by the Rhizobacterium Paenibacillus polymyxa. Current Microbiology, 2010, 61, 376-380.	2.2	18
50	Electrooptical properties of the microbial suspensions during a cell's interaction with the antibodies of a different specificity. Applied Biochemistry and Microbiology, 2010, 46, 61-64.	0.9	1
51	Capsular polysaccharide of the bacterium Azospirillum lipoferum Sp59b: Structure and antigenic specificity. Biochemistry (Moscow), 2010, 75, 606-613.	1.5	13
52	On the Enhanced Antibacterial Activity of Antibiotics Mixed with Gold Nanoparticles. Nanoscale Research Letters, 2009, 4, 794-801.	5.7	188
53	Immunochemical properties and localization of lectin from the basidiomycete Grifola frondosa (Fr.) S.F. Gray. Microbiology, 2009, 78, 202-207.	1.2	2
54	Application of enzyme immunoassay for detection of the nitrogen-fixing bacteria of the genus Azospirillum in soil suspensions. Microbiology, 2009, 78, 598-602.	1.2	4

GENNADY L BURYGIN

#	Article	IF	CITATIONS
55	Study of immunochemical heterogeneity of Azospirillum brasilense lipopolysaccharides. Microbiology, 2008, 77, 166-170.	1.2	11
56	Chemical and serological studies of liposaccharides of bacteria of the genus Azospirillum. Microbiology, 2008, 77, 305-312.	1.2	21
57	Composition and immunochemical characteristics of exopolysaccharides from the rhizobacterium Paenibacillus polymyxa 1465. Microbiology, 2008, 77, 553-558.	1.2	10
58	Electrophysical characteristics of Azospirillum brasilense Sp245 during interaction with antibodies to various cell surface epitopes. Analytical Biochemistry, 2007, 370, 201-205.	2.4	15
59	Detection of a sheath on Azospirillum brasilense polar flagellum. Microbiology, 2007, 76, 728-734.	1.2	17
60	Chemical composition and immunochemical characteristics of the lipopolysaccharide of nitrogen-fixing rhizobacterium Azospirillum brasilense CD. Microbiology, 2006, 75, 323-328.	1.2	6
61	Analysis of DNA, lipopolysaccharide structure, and some cultural and morphological properties in closely related strains of Azospirillum brasilense. Microbiology, 2005, 74, 188-193.	1.2	9
62	<title>Structure of insoluble immune complexes as studied by spectroturbidimetry and dynamic light scattering</title> . , 2004, 5475, 26.		1
63	A method for studying insoluble immune complexes. Biochimica Et Biophysica Acta - General Subjects, 2004, 1670, 199-207.	2.4	13
64	Atypical R–S Dissociation in Azospirillum brasilense. Microbiology, 2003, 72, 48-51.	1.2	7
65	Title is missing!. Applied Biochemistry and Microbiology, 2002, 38, 252-254.	0.9	0