
Pradeep L Menezes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1451855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tribological interactions of 3D printed polyurethane and polyamide with water-responsive skin model. Friction, 2022, 10, 159-166.	6.4	6
2	Recent progress on phosphonium-based room temperature ionic liquids: Synthesis, properties, tribological performances and applications. Tribology International, 2022, 167, 107331.	5.9	35
3	The effect of particulate additive mixtures on the tribological performance of phosphonium-based ionic liquid lubricants. Tribology International, 2022, 165, 107300.	5.9	12
4	Surface Modification of 6xxx Series Aluminum Alloys. Coatings, 2022, 12, 180.	2.6	15
5	Thermal decomposition of phosphonium salicylate and phosphonium benzoate ionic liquids. Journal of Molecular Liquids, 2022, 352, 118700.	4.9	12
6	Influence of Cryomilling on Crystallite Size of Aluminum Powder and Spark Plasma Sintered Component. Nanomaterials, 2022, 12, 551.	4.1	10
7	Tribological and Corrosion Behavior of High Pressure Cold Sprayed Duplex 316ÂL Stainless Steel. Tribology International, 2022, 169, 107471.	5.9	22
8	Effect of Gas Propellant Temperature on the Microstructure, Friction, and Wear Resistance of High-Pressure Cold Sprayed Zr702 Coatings on Al6061 Alloy. Coatings, 2022, 12, 263.	2.6	13
9	A Brief Review on Factors Affecting the Tribological Interaction between Human Skin and Different Textile Materials. Materials, 2022, 15, 2184.	2.9	8
10	Welding Techniques for High Entropy Alloys: Processes, Properties, Characterization, and Challenges. Materials, 2022, 15, 2273.	2.9	10
11	Review of Molecular Dynamics Simulations of Phosphonium Ionic Liquid Lubricants. Tribology Letters, 2022, 70, 1.	2.6	8
12	Graphene aerogel and its composites: synthesis, properties and applications. Journal of Porous Materials, 2022, 29, 1011-1025.	2.6	6
13	Synergistic Study of Solid Lubricant Nano-Additives Incorporated in canola oil for Enhancing Energy Efficiency and Sustainability. Sustainability, 2022, 14, 290.	3.2	17
14	Ultrasonic Nanocrystal Surface Modification: Processes, Characterization, Properties, and Applications. Nanomaterials, 2022, 12, 1415.	4.1	23
15	Role of B2O3 and CaO in Al2O3 matrix composite: In-situ phases, density, hardness and wear resistance. Tribology International, 2022, 172, 107588.	5.9	5
16	Role of CuO in Al2O3-B2O3 Composites: In Situ Phases, Density, Hardness, and Wear Resistance. Journal of Tribology, 2022, 144, .	1.9	4
17	Cermet Systems: Synthesis, Properties, and Applications. Ceramics, 2022, 5, 210-236.	2.6	11
18	Effect of Ion Pair on Contact Angle for Phosphonium Ionic Liquids. Journal of Physical Chemistry B, 2022, 126, 4354-4363.	2.6	1

#	Article	IF	CITATIONS
19	Advanced High-Strength Steels for Automotive Applications: Arc and Laser Welding Process, Properties, and Challenges. Metals, 2022, 12, 1051.	2.3	22
20	Tribological performance of environmental friendly ionic liquids for high-temperature applications. Journal of Cleaner Production, 2021, 279, 123666.	9.3	22
21	Application of Metal Matrix Composites in Engineering Sectors. , 2021, , 525-539.		5
22	Improvement of Wear, Pitting Corrosion Resistance and Repassivation Ability of Mg-Based Alloys Using High Pressure Cold Sprayed (HPCS) Commercially Pure-Titanium Coatings. Coatings, 2021, 11, 57.	2.6	13
23	Introduction to tribocorrosion. , 2021, , 1-16.		Ο
24	Tribocorrosion Behavior of Inconel 718 Fabricated by Laser Powder Bed Fusion-Based Additive Manufacturing. Coatings, 2021, 11, 195.	2.6	7
25	Tribological Performance of Graphite Nanoplatelets Reinforced Al and Al/Al2O3 Self-Lubricating Composites. Materials, 2021, 14, 1183.	2.9	21
26	Ball Milled Graphene Nano Additives for Enhancing Sliding Contact in Vegetable Oil. Nanomaterials, 2021, 11, 610.	4.1	14
27	Diamond-Like Carbon (DLC) Coatings: Classification, Properties, and Applications. Applied Sciences (Switzerland), 2021, 11, 4445.	2.5	71
28	Plasma Electrolytic Oxidation (PEO) Process—Processing, Properties, and Applications. Nanomaterials, 2021, 11, 1375.	4.1	111
29	Additively Manufactured Coatings. Coatings, 2021, 11, 609.	2.6	0
30	Atmospheric Plasma Spray Coating of NiTi on Mild Steel Substrate: An Microstructural Investigation. Journal of Bio- and Tribo-Corrosion, 2021, 7, 1.	2.6	10
31	Thermodynamic stabilization of nanocrystalline aluminum. Journal of Materials Science, 2021, 56, 14611-14623.	3.7	12
32	Dynamically Tunable Friction via Subsurface Stiffness Modulation. Frontiers in Robotics and AI, 2021, 8, 691789.	3.2	7
33	Water-Based Lubricants: Development, Properties, and Performances. Lubricants, 2021, 9, 73.	2.9	58
34	Peening Techniques for Surface Modification: Processes, Properties, and Applications. Materials, 2021, 14, 3841.	2.9	48
35	Recent Progress on Electroactive Polymers: Synthesis, Properties and Applications. Ceramics, 2021, 4, 516-541.	2.6	16
36	Self-Lubricating Materials for Extreme Condition Applications. Materials, 2021, 14, 5588.	2.9	36

#	Article	IF	CITATIONS
37	Friction Stir Processing on the Tribological, Corrosion, and Erosion Properties of Steel: A Review. Journal of Manufacturing and Materials Processing, 2021, 5, 97.	2.2	19
38	Tribological Properties of Additive Manufactured Materials for Energy Applications: A Review. Processes, 2021, 9, 31.	2.8	26
39	Tribological Properties of High-Entropy Alloys under Dry Conditions for a Wide Temperature Range—A Review. Materials, 2021, 14, 5814.	2.9	31
40	Nanocrystalline Materials: Synthesis, Characterization, Properties, and Applications. Crystals, 2021, 11, 1317.	2.2	27
41	Ultrasonic Surface Rolling Process: Properties, Characterization, and Applications. Applied Sciences (Switzerland), 2021, 11, 10986.	2.5	44
42	Direct laser shock surface patterning of an AZ31B magnesium alloy: Microstructure evolution and friction performance. Journal of Materials Processing Technology, 2020, 275, 116333.	6.3	17
43	Material Design and Surface Engineering for Bio-implants. Jom, 2020, 72, 684-696.	1.9	21
44	Supersonic particle deposition as an additive technology: methods, challenges, and applications. International Journal of Advanced Manufacturing Technology, 2020, 106, 2079-2099.	3.0	21
45	Self-healing and superhydrophobic coatings for corrosion inhibition and protection. International Journal of Advanced Manufacturing Technology, 2020, 106, 2119-2131.	3.0	33
46	Critical Overview of Coatings Technology for Metal Matrix Composites. Journal of Bio- and Tribo-Corrosion, 2020, 6, 1.	2.6	18
47	Influence of laser shock peening on the surface energy and tribocorrosion properties of an AZ31B Mg alloy. Wear, 2020, 462-463, 203490.	3.1	12
48	Enhanced corrosion resistance and surface bioactivity of AZ31B Mg alloy by high pressure cold sprayed monolayer Ti and bilayer Ta/Ti coatings in simulated body fluid. Materials Chemistry and Physics, 2020, 256, 123627.	4.0	32
49	Manufacturing and Mechanical Characterization of Fly-Ash-Reinforced Materials for Furnace Lining Applications. Journal of Materials Engineering and Performance, 2020, 29, 6307-6321.	2.5	3
50	Conversion of Waste Plastic to Oils for Tribological Applications. Lubricants, 2020, 8, 78.	2.9	22
51	Influence of hydrostatic pressure on wetting state and corrosion of superhydrophobic coatings. International Journal of Advanced Manufacturing Technology, 2020, 110, 457-470.	3.0	4
52	Friction and Wear Behavior of Alumina Composites with In-Situ Formation of Aluminum Borate and Boron Nitride. Materials, 2020, 13, 4502.	2.9	7
53	Influence of Abrasive Load on Wettability and Corrosion Inhibition of a Commercial Superhydrophobic Coating. Coatings, 2020, 10, 887.	2.6	2
54	Friction-based welding processes: friction welding and friction stir welding. Journal of Adhesion Science and Technology, 2020, 34, 2613-2637.	2.6	78

#	Article	IF	CITATIONS
55	Laser surface texturing and related techniques for enhancing tribological performance of engineering materials: A review. Journal of Manufacturing Processes, 2020, 53, 153-173.	5.9	211
56	Corrosion performance of nanocomposite coatings in moist SO2 environment. International Journal of Advanced Manufacturing Technology, 2020, 106, 4769-4776.	3.0	5
57	Carbon solid lubricants: role of different dimensions. International Journal of Advanced Manufacturing Technology, 2020, 107, 3875-3895.	3.0	29
58	A Brief Review of Fly Ash as Reinforcement for Composites with Improved Mechanical and Tribological Properties. Jom, 2020, 72, 2340-2351.	1.9	35
59	Effect of Laser Shock Peening on the Wear–Corrosion Synergistic Behavior of an AZ31B Magnesium Alloy. Journal of Tribology, 2020, 142, .	1.9	15
60	In-Situ Fretting Wear Analysis of Electrical Connectors for Real System Applications. Journal of Manufacturing and Materials Processing, 2019, 3, 47.	2.2	9
61	Surface Engineering of Solar Cells to Improve Efficiency. Jom, 2019, 71, 4319-4329.	1.9	2
62	Surface Energy and Tribology of Electrodeposited Ni and Ni–Graphene Coatings on Steel. Lubricants, 2019, 7, 87.	2.9	20
63	Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers, 2019, 11, 1667.	4.5	776
64	Advances in triboluminescence and mechanoluminescence. Journal of Materials Science: Materials in Electronics, 2019, 30, 19675-19690.	2.2	25
65	Anisotropic microstructure evolution of an AZ31B magnesium alloy subjected to dry sliding and its effects on friction and wear performance. Materialia, 2019, 8, 100444.	2.7	9
66	Advanced Metal Matrix Nanocomposites. Metals, 2019, 9, 330.	2.3	174
67	Effect of Micro- and Nano-Sized Carbonous Solid Lubricants as Oil Additives in Nanofluid on Tribological Properties. Lubricants, 2019, 7, 25.	2.9	33
68	Tribocorrosion Performance of Tool Steel for Rock Drilling Process. Journal of Bio- and Tribo-Corrosion, 2019, 5, 1.	2.6	6
69	The influence of surface pre-twinning on the friction and wear performance of an AZ31B Mg alloy. Applied Surface Science, 2019, 480, 998-1007.	6.1	30
70	Friction and Wear Behavior of Environmentally Friendly Ionic Liquids for Sustainability of Biolubricants. Journal of Tribology, 2019, 141, .	1.9	10
71	Transition from Self-Organized Criticality into Self-Organization during Sliding Si3N4 Balls against Nanocrystalline Diamond Films. Entropy, 2019, 21, 1055.	2.2	1
72	Tribocorrosion of Porous Titanium Used in Biomedical Applications. Journal of Bio- and Tribo-Corrosion, 2019, 5, 1.	2.6	23

#	Article	IF	CITATIONS
73	Influence of environmental friendly multiphase lubricants on the friction and transfer layer formation during sliding against textured surfaces. Journal of Cleaner Production, 2019, 209, 1245-1251.	9.3	18
74	Surface texturing by indirect laser shock surface patterning for manipulated friction coefficient. Journal of Materials Processing Technology, 2018, 257, 227-233.	6.3	38
75	Synergistic wear-corrosion analysis and modelling of nanocomposite coatings. Tribology International, 2018, 121, 30-44.	5.9	34
76	Tribological study of imidazolium and phosphonium ionic liquid-based lubricants as additives in carboxylic acid-based natural oil: Advancements in environmentally friendly lubricants. Journal of Cleaner Production, 2018, 176, 241-250.	9.3	38
77	Graphene-Reinforced Metal and Polymer Matrix Composites. Jom, 2018, 70, 829-836.	1.9	37
78	Surface characterization and tribological performance of laser shock peened steel surfaces. Surface and Coatings Technology, 2018, 351, 188-197.	4.8	50
79	Natural Adhesion System Leads to Synthetic Adhesives. Journal of Bio- and Tribo-Corrosion, 2018, 4, 1.	2.6	12
80	Synthesis and recent advances in tribological applications of graphene. International Journal of Advanced Manufacturing Technology, 2018, 97, 3999-4019.	3.0	40
81	A Review on the Science and Technology of Natural and Synthetic Biolubricants. Journal of Bio- and Tribo-Corrosion, 2017, 3, 1.	2.6	61
82	Ionic Liquids: A Plausible Future of Bio-lubricants. Journal of Bio- and Tribo-Corrosion, 2017, 3, 1.	2.6	21
83	Influence of cutter velocity, friction coefficient and rake angle on the formation of discontinuous rock fragments during rock cutting process. International Journal of Advanced Manufacturing Technology, 2017, 90, 3811-3827.	3.0	21
84	Evaluation of boron nitride particles on the tribological performance of avocado and canola oil for energy conservation and sustainability. International Journal of Advanced Manufacturing Technology, 2017, 89, 3475-3486.	3.0	49
85	Influence of rock mechanical properties and rake angle on the formation of rock fragments during cutting operation. International Journal of Advanced Manufacturing Technology, 2017, 90, 127-139.	3.0	20
86	Performance Analysis of Retrofitted Tribo-Corrosion Test Rig for Monitoring In Situ Oil Conditions. Materials, 2017, 10, 1145.	2.9	10
87	Comparative Analysis of Two Methods for Evaluating Wear Rate of Nanocrystalline Diamond Films. Key Engineering Materials, 2016, 721, 345-350.	0.4	5
88	Effect of In-situ Processing Parameters on the Mechanical and Tribological Properties of Self-Lubricating Hybrid Aluminum Nanocomposites. Tribology Letters, 2016, 62, 1.	2.6	21
89	Mechanical, physical and tribological characterization of nano-cellulose fibers reinforced bio-epoxy composites: An attempt to fabricate and scale the â€~Green' composite. Carbohydrate Polymers, 2016, 147, 282-293.	10.2	115
90	Influence of friction and rake angle on the formation of built-up edge during the rock cutting process. International Journal of Rock Mechanics and Minings Sciences, 2016, 88, 175-182.	5.8	15

#	Article	IF	CITATIONS
91	Advances in Bio-inspired Tribology for Engineering Applications. Journal of Bio- and Tribo-Corrosion, 2016, 2, 1.	2.6	18
92	Engineering and Technology of Environmentally Friendly Lubricants. , 2016, , 233-271.		2
93	State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world. Engineering Science and Technology, an International Journal, 2016, 19, 717-736.	3.2	207
94	Surface texturing to control friction and wear for energy efficiency and sustainability. International Journal of Advanced Manufacturing Technology, 2016, 85, 1385-1394.	3.0	11
95	Effect of graphite particles on improving tribological properties Al-16Si-5Ni-5Graphite self-lubricating composite under fully flooded and starved lubrication conditions for transportation applications. International Journal of Advanced Manufacturing Technology, 2016, 87, 929-939.	3.0	38
96	Advancements in Eco-friendly Lubricants for Tribological Applications: Past, Present, and Future. Materials Forming, Machining and Tribology, 2016, , 41-61.	1.1	15
97	Tribological performance of self-lubricating aluminum matrix nanocomposites: Role of graphene nanoplatelets. Engineering Science and Technology, an International Journal, 2016, 19, 463-469.	3.2	129
98	Influences of graphite reinforcement on the tribological properties of self-lubricating aluminum matrix composites for green tribology, sustainability, and energy efficiency—a review. International Journal of Advanced Manufacturing Technology, 2016, 83, 325-346.	3.0	121
99	Influence of Surface Texture and Roughness of Softer and Harder Counter Materials on Friction During Sliding. Journal of Materials Engineering and Performance, 2015, 24, 393-403.	2.5	12
100	The influence of fatty acids on tribological and thermal properties of natural oils as sustainable biolubricants. Tribology International, 2015, 90, 123-134.	5.9	181
101	The influence of surface roughness and particulate size on the tribological performance of bio-based multi-functional hybrid lubricants. Tribology International, 2015, 88, 40-55.	5.9	63
102	Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) andÂgraphene– A review. Composites Part B: Engineering, 2015, 77, 402-420.	12.0	696
103	Studies on the formation of discontinuous rock fragments during cutting operation. International Journal of Rock Mechanics and Minings Sciences, 2014, 71, 131-142.	5.8	59
104	Studies on the formation of discontinuous chips during rock cutting using an explicit finite element model. International Journal of Advanced Manufacturing Technology, 2014, 70, 635-648.	3.0	48
105	An explicit finite element model to study the influence of rake angle and friction during orthogonal metal cutting. International Journal of Advanced Manufacturing Technology, 2014, 73, 875-885.	3.0	16
106	Tribological response of soft materials sliding against hard surface textures at various numbers of cycles. Lubrication Science, 2013, 25, 79-99.	2.1	14
107	The Size Effect of Boron Nitride Particles on the Tribological Performance of Biolubricants for Energy Conservation and Sustainability. Tribology Letters, 2013, 51, 437-452.	2.6	110
108	Experimental and numerical analysis of helical-wedge rolling process for producing steel balls. International Journal of Machine Tools and Manufacture, 2013, 67, 1-7.	13.4	72

#	Article	IF	CITATIONS
109	Tribology in Metal Forming. , 2013, , 783-818.		3
110	Self-Lubricating Behavior of Graphite-Reinforced Composites. , 2013, , 341-389.		11
111	Fundamentals of Engineering Surfaces. , 2013, , 3-41.		12
112	Fundamentals of Lubrication. , 2013, , 295-340.		12
113	Tribology of Solid Lubricants. , 2013, , 447-494.		17
114	Friction and Wear. , 2013, , 43-91.		16
115	Self-Lubricating Behavior of Graphite Reinforced Metal Matrix Composites. Green Energy and Technology, 2012, , 445-480.	0.6	23
116	Analysis of Strain Rates and Microstructural Evaluation during Metal Forming: Role of Surface Texture and Friction. Tribology Transactions, 2012, 55, 582-589.	2.0	11
117	Studies on the Tribological Behavior of Natural Fiber Reinforced Polymer Composite. Green Energy and Technology, 2012, , 329-345.	0.6	26
118	Green Lubricants: Role of Additive Size. Green Energy and Technology, 2012, , 265-286.	0.6	13
119	Analysis of Shoe Friction During Sliding Against Floor Material: Role of Fluid Contaminant. Journal of Tribology, 2012, 134, .	1.9	24
120	Tribological Performance of Environmentally Friendly Ionic Liquid Lubricants. , 2012, , .		13
121	Analysis of the Contribution of Adhesion and Hysteresis to Shoe–Floor Lubricated Friction in the Boundary Lubrication Regime. Tribology Letters, 2012, 47, 341-347.	2.6	39
122	Tribological Properties of Fly Ash-Based Green Friction Products. Green Energy and Technology, 2012, , 429-443.	0.6	4
123	Friction and transfer layer formation in polymer–steel tribo-system: Role of surface texture and roughness parameters. Wear, 2011, 271, 2213-2221.	3.1	55
124	The role of surface texture on friction and transfer layer formation during repeated sliding of Al–4Mg against steel. Wear, 2011, 271, 1785-1793.	3.1	21
125	Role of Surface Texture, Roughness, and Hardness on Friction During Unidirectional Sliding. Tribology Letters, 2011, 41, 1-15.	2.6	71
126	Response of Materials During Sliding on Various Surface Textures. Journal of Materials Engineering and Performance, 2011, 20, 1438-1446.	2.5	11

#	Article	IF	CITATIONS
127	Influence of Inclination Angle and Machining Direction on Friction and Transfer Layer Formation. Journal of Tribology, 2011, 133, .	1.9	8
128	Tribological Behavior of Aluminum Micro-and Nano-Composites. International Journal of Aerospace Innovations, 2011, 3, 153-162.	0.2	6
129	Response of materials as a function of grinding angle on friction and transfer layer formation. International Journal of Advanced Manufacturing Technology, 2010, 49, 485-495.	3.0	17
130	A parameter characterizing plowing nature of surfaces close to Gaussian. Tribology International, 2010, 43, 370-380.	5.9	8
131	Influence of tilt angle of plate on friction and transfer layer—A study of aluminium pin sliding against steel plate. Tribology International, 2010, 43, 897-905.	5.9	14
132	Influence of Friction and Rake Angle on the Formation of Discontinuous Rock Fragments During Rock Cutting. , 2010, , .		2
133	Influence of Die Surface Textures during Metal Forming—A Study Using Experiments and Simulation. Materials and Manufacturing Processes, 2010, 25, 1030-1039.	4.7	21
134	Influence of boric acid additive size on green lubricant performance. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 4851-4868.	3.4	103
135	Study of Friction and Transfer Layer Formation in Copper-Steel Tribo-System: Role of Surface Texture and Roughness Parameters. Tribology Transactions, 2009, 52, 611-622.	2.0	40
136	Influence of friction during forming processes—a study using a numerical simulation technique. International Journal of Advanced Manufacturing Technology, 2009, 40, 1067-1076.	3.0	47
137	Influence of roughness parameters and surface texture on friction during sliding of pure lead over 080 M40 steel. International Journal of Advanced Manufacturing Technology, 2009, 43, 731-743.	3.0	32
138	Role of surface texture of harder surface on subsurface deformation. Wear, 2009, 266, 103-109.	3.1	32
139	Studies on friction and formation of transfer layer when Al–4Mg alloy pins slid at various numbers of cycles on steel plates of different surface texture. Wear, 2009, 267, 525-534.	3.1	9
140	Influence of inclination angle of plate on friction, stick-slip and transfer layer—A study of magnesium pin sliding against steel plate. Wear, 2009, 267, 476-484.	3.1	14
141	Influence of surface texture and roughness parameters on friction and transfer layer formation during sliding of aluminium pin on steel plate. Wear, 2009, 267, 1534-1549.	3.1	109
142	Studies on Friction and Formation of Transfer Layer in HCP Metals. Journal of Tribology, 2009, 131, .	1.9	6
143	Influence of roughness parameters on coefficient of friction under lubricated conditions. Sadhana - Academy Proceedings in Engineering Sciences, 2008, 33, 181-190.	1.3	58
144	Subsurface deformation and the role of surface texture—A study with Cu pins and steel plates. Sadhana - Academy Proceedings in Engineering Sciences, 2008, 33, 191-201.	1.3	10

#	Article	IF	CITATIONS
145	Friction tensor concept for textured surfaces. Sadhana - Academy Proceedings in Engineering Sciences, 2008, 33, 203-206.	1.3	0
146	Study of solid lubrication with MoS2 coating in the presence of additives using reciprocating ball-on-flat scratch tester. Sadhana - Academy Proceedings in Engineering Sciences, 2008, 33, 207-220.	1.3	59
147	Effect of surface roughness parameters and surface texture on friction and transfer layer formation in tin–steel tribo-system. Journal of Materials Processing Technology, 2008, 208, 372-382.	6.3	57
148	On the effect of surface texture on friction and transfer layer formation—A study using Al and steel pair. Wear, 2008, 265, 1655-1669.	3.1	47
149	Influence of roughness parameters of harder surface on coefficient of friction and transfer layer formation. International Journal of Surface Science and Engineering, 2008, 2, 98.	0.4	7
150	Role of surface texture and roughness parameters in friction and transfer layer formation under dry and lubricated sliding conditions. International Journal of Materials Research, 2008, 99, 795-807.	0.3	8
151	Studies on Friction in an Iron-Steel Tribo-System Under Dry and Lubricated Conditions. Materials and Manufacturing Processes, 2008, 23, 698-707.	4.7	7
152	Effect of Surface Topography on Friction and Transfer Layer during Sliding. Tribology Online, 2008, 3, 25-30.	0.9	20
153	Role of Surface Texture on Friction under Boundary Lubricated Conditions. Tribology Online, 2008, 3, 12-18.	0.9	24
154	Studies On Friction And Transfer Layer Using Inclined Scratch. Tribology and Interface Engineering Series, 2006, , 262-279.	0.0	5
155	Influence of surface texture on coefficient of friction and transfer layer formation during sliding of pure magnesium pin on 080 M40 (EN8) steel plate. Wear, 2006, 261, 578-591.	3.1	57
156	Effect of directionality of unidirectional grinding marks on friction and transfer layer formation of Mg on steel using inclined scratch test. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 429, 149-160.	5.6	43
157	Studies on friction and transfer layer using inclined scratch. Tribology International, 2006, 39, 175-183.	5.9	46
158	Effect of Roughness Parameter and Grinding Angle on Coefficient of Friction When Sliding of Al–Mg Alloy Over EN8 Steel. Journal of Tribology, 2006, 128, 697-704.	1.9	83
159	Tribology and Applications of Self-Lubricating Materials. , 0, , .		12
160	Wear Rate of Nanocrystalline Diamond Coating under High Temperature Sliding Conditions. Solid State Phenomena, 0, 267, 219-223.	0.3	4