

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1450584/publications.pdf

Version: 2024-02-01

		331670	345221
36	1,318	21	36
papers	citations	h-index	g-index
37	37	37	2151
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Magnetic multi-enzyme cascade combined with liquid chromatography tandem mass spectrometry for fast DNA digestion and quantitative analysis of 5-hydroxymethylcytosine in genome of human bladder cancer T24 cells induced by tetrachlorobenzoquinone. Journal of Chromatography A, 2022, 1676, 463279.	3.7	1
2	Selective extraction and detection of \hat{l}^2 -agonists in swine urine for monitoring illegal use in livestock breeding. Food Chemistry, 2020, 313, 126155.	8.2	42
3	Fluorescent imaging of cytoplasmic nucleolin in live cells by a functionalized-engineered aptamer. Chemical Communications, 2020, 56, 14171-14174.	4.1	6
4	Profiling of epigenetic DNA modifications by advanced liquid chromatography-mass spectrometry technologies. TrAC - Trends in Analytical Chemistry, 2019, 110, 173-182.	11.4	27
5	Elevated 8-oxo-7,8-dihydro-2′-deoxyguanosine in genome of T24 bladder cancer cells induced by halobenzoquinones. Journal of Environmental Sciences, 2018, 63, 133-139.	6.1	17
6	Multienzyme Cascade Bioreactor for a 10 min Digestion of Genomic DNA into Single Nucleosides and Quantitative Detection of Structural DNA Modifications in Cellular Genomic DNA. ACS Applied Materials & DNA (2018), 10, 21883-21890.	8.0	21
7	Detection of 8-hydroxydeoxyguanosine (8-OHdG) as a biomarker of oxidative damage in peripheral leukocyte DNA by UHPLC–MS/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1064, 1-6.	2.3	62
8	Three-Enzyme Cascade Bioreactor for Rapid Digestion of Genomic DNA into Single Nucleosides. Analytical Chemistry, 2016, 88, 7730-7737.	6.5	36
9	Oxidative stress and immunotoxicity induced by graphene oxide in zebrafish. Aquatic Toxicology, 2016, 174, 54-60.	4.0	147
10	A fluorophore-conjugated ascorbic acid functions for the visualization of sodium vitamin C transporters in living cells. Analytical Methods, 2015, 7, 9663-9672.	2.7	2
11	Co-exposure of Carboxyl-Functionalized Single-Walled Carbon Nanotubes and 17α-Ethinylestradiol in Cultured Cells: Effects on Bioactivity and Cytotoxicity. Environmental Science & Emp; Technology, 2014, 48, 13978-13984.	10.0	39
12	Study of cytotoxic effects of single-walled carbon nanotubes functionalized with different chemical groups on human MCF7 cells. Chemosphere, 2013, 92, 576-582.	8.2	20
13	Polyvinyl Pyrrolidone Promotes DNA Cleavage by a ROS-Independent and Depurination Mechanism. Environmental Science & Environmental Science & Environme	10.0	10
14	Plastic antibody for DNA damage: fluorescent imaging of BPDE–dG adducts in genomic DNA. Analyst, The, 2013, 138, 4958.	3 . 5	10
15	High performance aptamer affinity chromatography for single-step selective extraction and screening of basic protein lysozyme. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 903, 112-117.	2.3	63
16	Size-Dependent Toxicity of Nano-C60 Aggregates: More Sensitive Indication by Apoptosis-Related Bax Translocation in Cultured Human Cells. Environmental Science & Environmental Science & 2012, 46, 3457-3464.	10.0	53
17	Capillary Monolithic Bioreactor of Immobilized Snake Venom Phosphodiesterase for Mass Spectrometry Based Oligodeoxynucleotide Sequencing. Analytical Chemistry, 2012, 84, 1157-1164.	6.5	9
18	Interaction of Human Serum Album and C60 Aggregates in Solution. International Journal of Molecular Sciences, 2011, 12, 4964-4974.	4.1	50

#	Article	IF	Citations
19	Dummy molecularly imprinted polymer for selective screening of trace bisphenols in river water. Analytical Methods, 2011, 3, 173-180.	2.7	57
20	Pseudo-template molecularly imprinted polymer for selective screening of trace \hat{l}^2 -lactam antibiotics in river and tap water. Journal of Chromatography A, 2010, 1217, 5420-5426.	3.7	71
21	Molecularly imprinted nanotubes for enantioselective drug delivery and controlled release. Chemical Communications, 2010, 46, 7688.	4.1	83
22	Fluorescently Imaged Particle Counting Immunoassay for Sensitive Detection of DNA Modifications. Analytical Chemistry, 2010, 82, 9901-9908.	6. 5	21
23	Improved preparation and identification of aristolochic acid-DNA adducts by solid-phase extraction with liquid chromatography-tandem mass spectrometry. Journal of Environmental Sciences, 2009, 21, 1769-1776.	6.1	9
24	Fabrication and fluorescence imaging of human lowâ€density lipoprotein coatings for highly efficient capillary electrophoresis separation of basic proteins. Electrophoresis, 2009, 30, 1362-1371.	2.4	5
25	Highly sensitive detection of human thrombin in serum by affinity capillary electrophoresis/laser-induced fluorescence polarization using aptamers as probes. Journal of Chromatography A, 2009, 1216, 873-878.	3.7	39
26	Study of protein binding and micellar partition of highly hydrophobic molecules in a single system using capillary electrophoresis. Electrophoresis, 2008, 29, 3038-3046.	2.4	7
27	Focusing and stabilization of bisâ€intercalating dye–DNA complexes for highâ€sensitive CEâ€LIF DNA analysis. Electrophoresis, 2008, 29, 4454-4462.	2.4	23
28	Preparation, identification and analysis of stereoisomeric anti-benzo[a]pyrene diol epoxide–deoxyguanosine adducts using phenyl liquid chromatography with diode array, fluorescence and tandem mass spectrometry detection. Journal of Chromatography A, 2008, 1183, 119-128.	3.7	11
29	p-tert-Butylcalix[8]arene-bonded silica monoliths for liquid chromatography. Journal of Chromatography A, 2008, 1188, 199-207.	3.7	16
30	Macroporous polymer monoliths fabricated by using a metal–organic coordination gel template. Chemical Communications, 2007, , 4614.	4.1	46
31	Onâ€line solidâ€phase extraction with a monolithic weak cationâ€exchange column and simultaneous screening of α1â€adrenergic receptor antagonists in human plasma. Journal of Separation Science, 2007, 30, 2851-2857.	2.5	38
32	On-line clean-up and screening of oxacillin and cloxacillin in human urine and plasma with a weak ion exchange monolithic column. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 854, 85-90.	2.3	29
33	Purification and determination of stachyose in Chinese artichoke (Stachys Sieboldii Miq.) by high-performance liquid chromatography with evaporative light scattering detection. Talanta, 2006, 70, 208-212.	5.5	55
34	On-line simultaneous removal of human serum albumin and enrichment of doxazosin using a weak cation-exchange monolithic column. Journal of Chromatography A, 2006, 1129, 231-235.	3.7	62
35	Molecularly imprinted solid-phase extraction for rapid screening of mycophenolic acid in human plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2006, 844, 142-147.	2.3	31
36	Rapid and efficient chiral separation of nateglinide and its l-enantiomer on monolithic molecularly imprinted polymers. Journal of Chromatography A, 2005, 1090, 68-75.	3.7	99