Ichiro Shoji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1449733/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Room-temperature-bonded multiple GaAs plates for mid-IR wavelength conversion. , 2022, , .		Ο
2	Improvement of Multiple-plate GaAs Stacks for Mid-infrared Quasi-phase-matching Wavelength-conversion Devices Fabricated with Room-temperature Bonding. , 2021, , .		0
3	Quasi-phase-matching stack of 25 GaAs plates with high transmittance for high-power mid-infrared wavelength conversion fabricated by use of room-temperature bonding. Journal of the Optical Society of America B: Optical Physics, 2021, 38, B30.	2.1	5
4	Distinguishing dislocation densities in intrinsic layers of pin diamond diodes using two photon-excited photoluminescence imaging. Diamond and Related Materials, 2021, 117, 108463.	3.9	2
5	Accurate measurements of second-order nonlinear-optical coefficients of LaBGeO5 at UV generating wavelength region. , 2021, , .		Ο
6	Improvement of Multiple GaAs Plate-stacked Quasi-phase-matching Mid-infrared Wavelength-conversion Devices Fabricated With Room-temperature Bonding. , 2021, , .		0
7	Evaluation of eight nonlinear crystals for phase-matched Terahertz second-order difference-frequency generation at room temperature. Optical Materials Express, 2020, 10, 561.	3.0	16
8	Comparison of several nonlinear crystals for phase-matched nonlinear generation in the TeraHertz range. , 2020, , .		0
9	Fabrication of a quasi-phase-matching stack of 53 GaAs plates for high-power mid-infrared wavelength conversion by use of room-temperature bonding. , 2019, , .		4
10	Reflex arc of the teeth clenching-induced pressor response in rats. Journal of Physiological Sciences, 2018, 68, 89-100.	2.1	3
11	Accurate measurements of second-order nonlinear-optical coefficients of a UV-generating wavelength-conversion material: LaBGeO5. , 2018, , .		0
12	Direct Measurements of Temperature-Dependent Refractive Indices of Stoichiometric LiNbO3 and LiTaO3. , 2018, , .		0
13	Direct bonding of a laser crystal and Copper by use of the room-temperature bonding. , 2017, , .		0
14	Precise birefringence measurement of anisotropic materials by dual-comb spectroscopy. , 2017, , .		0
15	Room-temperature-bonded Nd:YAG/diamond composite laser with an anti-reflection coating layer at the bonded interface for high-power and highly efficient oscillation. , 2017, , .		0
16	High-power and highly efficient composite laser with an anti-reflection coated layer between a laser crystal and a diamond heat spreader fabricated by room-temperature bonding. Optics Express, 2017, 25, 22797.	3.4	28
17	Accurate measurement of electro-optic coefficients of undoped and MgO-doped stoichiometric LiNbO_3. Optical Materials Express, 2017, 7, 939.	3.0	12
18	Fabrication of quasi-phase-matching stacks of GaAs plates using a new technique: room-temperature bonding. Optical Materials Express, 2017, 7, 932.	3.0	13

Існіго Ѕнојі

#	Article	IF	CITATIONS
19	Development of multiple GaAs plate-stacked quasi-phase-matching mid-infrared wavelength-conversion devices by use of room-temperature bonding. , 2017, , .		0
20	Fabrication of Walk-off Compensating BBO Devices with Multiple Thin Plates Using Room-Temperature Bonding. , 2017, , .		0
21	Wavelength-conversion Characteristics of Quasi-phase-matching Stack of GaAs Plates Fabricated with the Room-temperature-bonding Technique. , 2017, , .		0
22	Fabrication of Quasi-phase-matching Stack of GaAs Plates Using a New Technique: Room-temperature Bonding. , 2016, , .		1
23	Heat-removal wavelength-conversion module by air-bubble reduction. , 2015, , .		0
24	Improved sellmeier equations of undoped and Mg-doped stoichiometric LiNbO <inf>3</inf> and LiTaO <inf>3</inf> from visible to mid-IR region. , 2015, , .		0
25	Room-temperature Bonding and its Applications to Solid-state Lasers and Wavelength-conversion Devices. , 2014, , .		0
26	Ultraviolet vortex generation using periodically bonded β-BaB_2O_4 device. Optics Express, 2014, 22, 12829.	3.4	15
27	Thermal characteristics of second harmonic generation by phase matched calorimetry. Optics Express, 2014, 22, 18268.	3.4	7
28	Phase-matching directions, refined Sellmeier equations, and second-order nonlinear coefficient of the infrared Langatate crystal La_3Ga_55Ta_05O_14. Optics Letters, 2014, 39, 4033.	3.3	32
29	Fabrication of walk-off compensating wavelength-conversion devices with stacks of multiple plates by use of room-temperature bonding. , 2014, , .		0
30	Room-temperature-bonding technology for laser and nonlinear crystals. , 2013, , .		0
31	In vitro experiment for verification of the tandem shunt valve system: a novel method for treating hydrocephalus by flexibly controlling cerebrospinal fluid flow and intracranial pressure. Journal of Neurosurgery: Pediatrics, 2013, 11, 43-47.	1.3	0
32	Temperature-Dependent Sellmeier Equation for Refractive Index of 1.0 mol % Mg-Doped Stoichiometric Lithium Tantalate. Japanese Journal of Applied Physics, 2013, 52, 032601.	1.5	30
33	Thermal management for high-power wavelength conversion. , 2013, , .		0
34	Fabrication and characterization of room-temperature-bonded composite lasers. , 2013, , .		0
35	Thermal effects in SHG with Focused Gaussian Beams. , 2013, , .		1
36	A New Walk-Off Compensating BBO Device with Thinner-Plate-Stacked Structure Fabricated by		1

Room-Temperature Bonding. , 2013, , .

Існіго Shoji

#	Article	IF	CITATIONS
37	Dephasing and lensing in high power wavelength conversion. , 2013, , .		Ο
38	Accurate measurement of quadratic nonlinear-optical coefficients of zinc oxide. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 2392.	2.1	7
39	Fabrication of a new structured highly efficient wavelength-conversion device by use of the room-temperature-bonding technique. , 2012, , .		2
40	Efficient Ultraviolet Second-Harmonic Generation from a Walk-Off-Compensating \$eta\$-BaB\$_{2}\$O\$_{4}\$ Device with a New Structure Fabricated by Room-Temperature Bonding. Applied Physics Express, 2012, 5, 052201.	2.4	24
41	Thermal performance in high power SHG characterized by phase-matched calorimetry. Optics Express, 2011, 19, 22588.	3.4	49
42	Severe Hypotension During the Decreasing Phase of G _z Stress in Anesthetized Rats Wearing an Anti-G Suit. Aviation, Space, and Environmental Medicine, 2011, 82, 1030-1036.	0.5	2
43	Accurate measurement of quadratic nonlinear-optical coefficients of gallium nitride. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 2026.	2.1	21
44	Fabrication of quasi-phase-matched devices by use of the room-temperature-bonding technique. , 2009, , .		5
45	Accurate measurements of second-order nonlinear optical coefficients of 6H and 4H silicon carbide. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 1892.	2.1	48
46	New Fabrication technique of quasi-phase-matched devices by use of the room-temperature-bonding. , 2009, , .		1
47	Comprehensive analysis of multiple-reflection effects on rotational Maker-fringe experiments. Journal of the Optical Society of America B: Optical Physics, 2008, 25, 1616.	2.1	11
48	Thermally-induced-birefringence effects of highly Nd3+-doped Y3Al5O12 ceramic lasers. Optical Materials, 2007, 29, 1271-1276.	3.6	33
49	Accurate Determination of Nonlinear Optical Coefficients of Hexagonal Silicon Carbide of Polytype 6H. , 2007, , .		0
50	Accurate Measurements of Second-Order Nonlinear-Optical Coefficients of Near-Stoichiometric LiNbO3 at 1.31 and 1.06 Âμm. , 2007, , .		0
51	Generation of 6 µm Radiation by Optical Parametric Oscillator and Difference Frequency Generation in Periodically Poled LiNbO3. Japanese Journal of Applied Physics, 2006, 45, 111-115.	1.5	4
52	Accurate measurement of second-order nonlinear-optical coefficients of undoped and MgO-doped near-stoichiometric LiNbO <inf>3</inf> ., 2006, , .		0
53	Accurate measurement of second-order nonlinear-optical coefficients of near-stoichiometric LiNbO3. , 2006, , .		0
54	Continuous-wave high-power Nd:YAG-KNbO3 laser at. Optics and Laser Technology, 2004, 36, 581-585.	4.6	4

4

Існіго Ѕнојі

#	Article	IF	CITATIONS
55	Oscillation spectra and dynamic effects in a highly-doped microchip Nd:YAG ceramic laser. Optics Express, 2004, 12, 2293.	3.4	42
56	Room-temperature, continuous-wave 1-W green power by single-pass frequency doubling in a bulk periodically poled MgO:LiNbO_3 crystal. Optics Letters, 2004, 29, 830.	3.3	52
57	High-energy quasi-phase-matched optical parametric oscillation in a 3-mm-thick periodically poled MgO:LiNbO_3 device. Optics Letters, 2004, 29, 2527.	3.3	32
58	<title>All-solid-state diode and end-pumped Nd:YAG laser passively Q-switched by Cr<formula>^{<roman>4+</roman>}</formula>:YAG saturable absorber</title> . , 2004, 5581, 170.		1
59	<title>Continuous-wave intracavity frequency-doubled Nd:YAG-KNbO<formula><inf><roman>3</roman></inf></formula> blue laser at 473 nm</title> . , 2004, ,		0
60	Reduction of the thermal load by laser oscillation in highly Nd3+-doped ceramic YAG. , 2004, , .		0
61	High-power green generation at room temperature in a periodically poled MgO: LiNbO3 by frequency doubling of a diode end-pumped Nd: GdVO4 laser. , 2004, , .		1
62	Reduction of the thermal load in highly Nd3+-doped ceramic YAG by laser oscillation. , 2004, , .		1
63	High-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser. Applied Physics Letters, 2003, 83, 3659-3661.	3.3	84
64	Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature. Applied Physics Letters, 2003, 82, 4062-4064.	3.3	129
65	High-Power Continuous Wave Green Generation by Single-Pass Frequency Doubling of a Nd:GdVO4Laser in a Periodically Poled MgO:LiNbO3Operating at Room Temperature. Japanese Journal of Applied Physics, 2003, 42, L1296-L1298.	1.5	38
66	The spectroscopic properties and laser characteristics of polycrystalline Nd: Y3ScxAl(5-x)O12 laser media. , 2003, , 444.		2
67	Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal. Applied Physics Letters, 2002, 80, 3048-3050.	3.3	61
68	Thermal-birefringence-induced depolarization in Nd:YAG ceramics. Optics Letters, 2002, 27, 234.	3.3	92
69	Tunable frequency-doubled Yb:YAG microchip lasers. Optical Materials, 2002, 19, 169-174.	3.6	54
70	Second-order nonlinear susceptibilities of various dielectric and semiconductor materials. Optical and Quantum Electronics, 2002, 34, 797-833.	3.3	74
71	Drastic Reduction of Depolarization Resulting from Thermally Induced Birefringence by Use of a (100)-Cut YAG Crystal. , 2002, , .		0
72	Absolute measurement of second-order nonlinear-optical coefficients of CsLiB_6O_10 for visible- to-ultraviolet second-harmonic wavelengths. Journal of the Optical Society of America B: Optical Physics, 2001, 18, 302.	2.1	30

Існіго Ѕнојі

#	Article	IF	CITATIONS
73	Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics. Applied Physics Letters, 2001, 79, 590-592.	3.3	107
74	Thermal Birefringence in Nd:YAG Ceramics. , 2001, , ME14.		4
75	Spectroscopy and laser emission under hot band resonant pump in highly doped Nd:YAG ceramics. Optics Communications, 2001, 195, 225-232.	2.1	33
76	Characterization of sublattice-reversed GaAs by reflection high energy electron diffraction and transmission electron microscopy. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 876-880.	2.7	11
77	Optical properties and laser characteristics of highly Nd[sup 3+]-doped Y[sub 3]Al[sub 5]O[sub 12] ceramics. Applied Physics Letters, 2000, 77, 939.	3.3	178
78	Second-Harmonic Generation from GaP/AlP Multilayers on GaP (111) Substrates Based on Quasi-Phase Matching for the Fundamental Standing Wave. Japanese Journal of Applied Physics, 2000, 39, L334-L336.	1.5	9
79	Relationship between F4Individuals and F5Lines in Cooking Quality of Rice. Plant Production Science, 2000, 3, 257-258.	2.0	Ο
80	Optical Properties and Laser Oscillations of Highly Neodymium-doped YAG Ceramics. , 2000, , .		3
81	GaAs/Ge/GaAs Sublattice Reversal Epitaxy on GaAs (100) and (111) Substrates for Nonlinear Optical Devices. Japanese Journal of Applied Physics, 1999, 38, L508-L511.	1.5	77
82	Absolute measurement of second-order nonlinear-optical coefficients of β-BaB_2O_4 for visible to ultraviolet second-harmonic wavelengths. Journal of the Optical Society of America B: Optical Physics, 1999, 16, 620.	2.1	57
83	Absolute scale of second-order nonlinear-optical coefficients. Journal of the Optical Society of America B: Optical Physics, 1997, 14, 2268.	2.1	706
84	Absolute Measurement of Second-Order Nonlinear Optical Coefficient of LiNbO3 by Parametric Processes. Optical Review, 1995, 2, 280-284.	2.0	10
85	Accurate Measurements of Second-Order Nonlinear-Optical Coefficients of Silicon Carbide. Materials Science Forum, 0, 615-617, 315-318.	0.3	1