
Emilie Layre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1448954/publications.pdf Version: 2024-02-01

FMILIELAVDE

#	Article	IF	CITATIONS
1	Targeted Lipidomics of Mycobacterial Lipids and Glycolipids. Methods in Molecular Biology, 2021, 2314, 549-577.	0.9	1
2	Host-Derived Lipids from Tuberculous Pleurisy Impair Macrophage Microbicidal-Associated Metabolic Activity. Cell Reports, 2020, 33, 108547.	6.4	18
3	Mycobacterium tuberculosis releases an antacid that remodels phagosomes. Nature Chemical Biology, 2019, 15, 889-899.	8.0	53
4	Protective efficacy of a lipid antigen vaccine in a guinea pig model of tuberculosis. Vaccine, 2017, 35, 1395-1402.	3.8	51
5	Metabolic anticipation in Mycobacterium tuberculosis. Nature Microbiology, 2017, 2, 17084.	13.3	85
6	Rifampin Resistance Mutations Are Associated with Broad Chemical Remodeling of Mycobacterium tuberculosis. Journal of Biological Chemistry, 2016, 291, 14248-14256.	3.4	64
7	Lysosomal Lipases PLRP2 and LPLA2 Process Mycobacterial Multi-acylated Lipids and Generate T Cell Stimulatory Antigens. Cell Chemical Biology, 2016, 23, 1147-1156.	5.2	32
8	Mycobacterial Metabolic Syndrome: LprG and Rv1410 Regulate Triacylglyceride Levels, Growth Rate and Virulence in Mycobacterium tuberculosis. PLoS Pathogens, 2016, 12, e1005351.	4.7	79
9	Biomarkers for Tuberculosis Based on Secreted, Species-Specific, Bacterial Small Molecules. Journal of Infectious Diseases, 2015, 212, 1827-1834.	4.0	20
10	Bee venom processes human skin lipids for presentation by CD1a. Journal of Experimental Medicine, 2015, 212, 149-163.	8.5	98
11	Lipidomic Analysis Links Mycobactin Synthase K to Iron Uptake and Virulence in M. tuberculosis. PLoS Pathogens, 2015, 11, e1004792.	4.7	37
12	InÂVivo Biosynthesis of Terpene Nucleosides Provides Unique Chemical Markers of Mycobacterium tuberculosis Infection. Chemistry and Biology, 2015, 22, 516-526.	6.0	34
13	Molecular profiling of <i>Mycobacterium tuberculosis</i> identifies tuberculosinyl nucleoside products of the virulence-associated enzyme Rv3378c. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2978-2983.	7.1	83
14	Human T cells use CD1 and MR1 to recognize lipids and small molecules. Current Opinion in Chemical Biology, 2014, 23, 31-38.	6.1	19
15	Mycobacterial Lipidomics. Microbiology Spectrum, 2014, 2, .	3.0	26
16	Lipidomic profiling of model organisms and the world's major pathogens. Biochimie, 2013, 95, 109-115.	2.6	29
17	Deciphering the Role of CD1e Protein in Mycobacterial Phosphatidyl-myo-inositol Mannosides (PIM) Processing for Presentation by CD1b to T Lymphocytes. Journal of Biological Chemistry, 2012, 287, 31494-31502.	3.4	29
18	The Polyketide Pks1 Contributes to Biofilm Formation in Mycobacterium tuberculosis. Journal of Bacteriology, 2012, 194, 715-721.	2.2	100

Emilie Layre

#	Article	IF	CITATIONS
19	Lipidomic discovery of deoxysiderophores reveals a revised mycobactin biosynthesis pathway in <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1257-1262.	7.1	61
20	Ultralong C100 Mycolic Acids Support the Assignment of Segniliparus as a New Bacterial Genus. PLoS ONE, 2012, 7, e39017.	2.5	20
21	COPI acts in both vesicular and tubular transport. Nature Cell Biology, 2011, 13, 996-1003.	10.3	108
22	A Comparative Lipidomics Platform for Chemotaxonomic Analysis of Mycobacterium tuberculosis. Chemistry and Biology, 2011, 18, 1537-1549.	6.0	188
23	Discovery of deoxyceramides and diacylglycerols as CD1b scaffold lipids among diverse groove-blocking lipids of the human CD1 system. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19335-19340.	7.1	69
24	Deciphering sulfoglycolipids of Mycobacterium tuberculosis. Journal of Lipid Research, 2011, 52, 1098-1110.	4.2	49
25	Mycolic Acids Constitute a Scaffold for Mycobacterial Lipid Antigens Stimulating CD1-Restricted T Cells. Chemistry and Biology, 2009, 16, 82-92.	6.0	148
26	The assembly of CD1e is controlled by an N-terminal propeptide which is processed in endosomal compartments. Biochemical Journal, 2009, 419, 661-668.	3.7	6
27	Cutting Edge: A Naturally Occurring Mutation in CD1e Impairs Lipid Antigen Presentation. Journal of Immunology, 2008, 180, 3642-3646.	0.8	35
28	Mycobacterial Lipidomics. , 0, , 341-360.		3