Warren Burggren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1448264/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hypoxia- and hyperoxia-related gene expression dynamics during developmental critical windows of the tropical gar Atractosteus tropicus. Comparative Biochemistry and Physiology Part A, Molecular & amp; Integrative Physiology, 2022, 263, 111093.	1.8	5
2	The physiology of the avian embryo. , 2022, , 1015-1046.		2
3	Metabolic cost of development, regeneration, and reproduction in the planarian Schmidtea mediterranea. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2022, 265, 111127.	1.8	3
4	Metabolic responses to crude oil during early life stages reveal critical developmental windows in the zebrafish (Danio rerio). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2022, 254, 109274.	2.6	0
5	Physiological Regulation of Growth, Hematology and Blood Gases in Chicken Embryos in Response to Low and High Incubation Humidity. Frontiers in Physiology, 2022, 13, .	2.8	1
6	Putting the August Krogh principle to work in developmental physiology. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2021, 252, 110825.	1.8	8
7	Survival, Growth, and Development in the Early Stages of the Tropical Gar Atractosteus tropicus: Developmental Critical Windows and the Influence of Temperature, Salinity, and Oxygen Availability. Fishes, 2021, 6, 5.	1.7	5
8	A cytoskeletal function for PBRM1 reading methylated microtubules. Science Advances, 2021, 7, .	10.3	17
9	Dietary Exposure to Low Levels of Crude Oil Affects Physiological and Morphological Phenotype in Adults and Their Eggs and Hatchlings of the King Quail (Coturnix chinensis). Frontiers in Physiology, 2021, 12, 661943.	2.8	4
10	Developmental Physiology: Grand Challenges. Frontiers in Physiology, 2021, 12, 706061.	2.8	5
11	Shoaling, boldness, anxiety-like behavior and locomotion in zebrafish (Danio rerio) are altered by acute benzo[a]pyrene exposure. Science of the Total Environment, 2021, 774, 145702.	8.0	35
12	Analysis of the potential behavioral impact of methanol when used as a solvent: Dataset from zebrafish (Danio rerio) behavioral research. Data in Brief, 2021, 36, 107018.	1.0	5
13	Embryotoxicity and Physiological Compensation in Chicken Embryos Exposed to Crude Oil. Environmental Toxicology and Chemistry, 2021, 40, 2347-2358.	4.3	1
14	Beyond the Chicken: Alternative Avian Models for Developmental Physiological Research. Frontiers in Physiology, 2021, 12, 712633.	2.8	13
15	Form and Function of the Vertebrate and Invertebrate Blood-Brain Barriers. International Journal of Molecular Sciences, 2021, 22, 12111.	4.1	17
16	Morphological and cardiac alterations after crude oil exposure in the early-life stages of the tropical gar (Atractosteus tropicus). Environmental Science and Pollution Research, 2021, , 1.	5.3	2
17	Metabolic rate and hypoxia tolerance in Girardinichthys multiradiatus (Pisces: Goodeidae), an endemic fish at high altitude in tropical Mexico. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2020, 239, 110576.	1.8	6
18	Evolutionary and cardioâ€respiratory physiology of airâ€breathing and amphibious fishes. Acta Physiologica, 2020, 228, e13406.	3.8	40

#	Article	IF	CITATIONS
19	Cardiovascular shunting in vertebrates: a practical integration of competing hypotheses. Biological Reviews, 2020, 95, 449-471.	10.4	17
20	Maternal serum concentration of anti-Müllerian hormone is a better predictor than basal follicle stimulating hormone of successful blastocysts development during IVF treatment. PLoS ONE, 2020, 15, e0239779.	2.5	5
21	Metabolic and Hematological Responses to Endotoxinâ€Induced Inflammation in Chicks Experiencing Embryonic 2,3,7,8â€Tetrachlorodibenzodioxin Exposure. Environmental Toxicology and Chemistry, 2020, 39, 2208-2220.	4.3	6
22	Metabolic physiology of the freshwater planaria <i>Girardia dorotocephela</i> and <i>Schmidtea mediterranea</i> : reproductive mode, specific dynamic action, and temperature. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 319, R428-R438.	1.8	3
23	Angiogenesis in the Avian Embryo Chorioallantoic Membrane: A Perspective on Research Trends and a Case Study on Toxicant Vascular Effects. Journal of Cardiovascular Development and Disease, 2020, 7, 56.	1.6	8
24	Remodeling the epigenome and (epi)cytoskeleton: a new paradigm for co-regulation by methylation. Journal of Experimental Biology, 2020, 223, .	1.7	18
25	Parental transgenerational epigenetic inheritance related to dietary crude oil exposure in <i>Danio rerio</i> . Journal of Experimental Biology, 2020, 223, .	1.7	20
26	Exposure to Crude Oil Induces Retinal Apoptosis and Impairs Visual Function in Fish. Environmental Science & Technology, 2020, 54, 2843-2850.	10.0	47
27	Cardiovascular Anatomy and Physiology. , 2020, , 119-161.		0
28	A Larval Zebrafish Model for Assessing Hypoxicâ€Induced In Vivo Cardiomyocyte Damage: Time Course for Induction and Cardiac Output Recovery. FASEB Journal, 2020, 34, 1-1.	0.5	0
29	Parental stressor exposure simultaneously conveys both adaptive and maladaptive larval phenotypes through epigenetic inheritance in the zebrafish (<i>Danio rerio</i>). Journal of Experimental Biology, 2019, 222, .	1.7	26
30	Physiological impacts of Deepwater Horizon oil on fish. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2019, 224, 108558.	2.6	46
31	Invited review: Development of acid-base regulation in vertebrates. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2019, 236, 110518.	1.8	11
32	Metabolic physiology of the Mayan cichlid fish (Mayaheros uropthalmus): Re-examination of classification as an oxyconformer. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2019, 237, 110538.	1.8	11
33	Blood-brain barrier function, cell viability, and gene expression of tight junction-associated proteins in the mouse are disrupted by crude oil, benzo[a]pyrene, and the dispersant COREXIT. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2019, 223, 96-105.	2.6	8
34	Mahiâ€mahi (Coryphaena hippurus) life development: morphological, physiological, behavioral and molecular phenotypes. Developmental Dynamics, 2019, 248, 337-350.	1.8	12
35	Developmental changes in oxygen consumption and hypoxia tolerance in the heat and hypoxiaâ€adapted tabasco line of the Nile tilapia <i>Oreochromis niloticus</i> , with a survey of the metabolic literature for the genus <i>Oreochromis</i> . Journal of Fish Biology, 2019, 94, 732-744.	1.6	18
36	Inadequacy of typical physiological experimental protocols for investigating consequences of stochastic weather events emerging from global warming. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 316, R318-R322.	1.8	12

#	Article	IF	CITATIONS
	Hypoxiaâ€induced developmental plasticity of larval growth, gill and labyrinth organ morphometrics in		
37	two anabantoid fish: The facultative airâ€breather Siamese fighting fish (Betta splendens) and the obligate airâ€breather the blue gourami (Trichopodus trichopterus). Journal of Morphology, 2019, 280,	1.2	13
	193-204. Very high blood oxygen affinity and large Bohr shift differentiates the air-breathing siamese fighting		
38	fish (Betta splendens) from the closely related anabantoid the blue gourami (Trichopodus) Tj ETQqO 0 0 rgBT /C)verlock 1(1.8) Tf ₇ 50 702 Tc
	Physiology, 2019, 229, 45-51.		
39	Behavioral consequences of dietary exposure to crude oil extracts in the Siamese fighting fish (Betta) Tj ETQq1	1 0.78431	4 rggT /Overla
09		4.0	20
	Phenotypic Switching Resulting From Developmental Plasticity: Fixed or Reversible?. Frontiers in		
40	Physiology, 2019, 10, 1634.	2.8	50
41	Physical and Chemical Variables Promote Successful Nesting in High Mountain Sceloporus Lizards in Central México. Herpetologica, 2019, 75, 134.	0.4	2
42	Hematology from embryo to adult in the bobwhite quail (Colinus virginianus): Differential effects in the adult of clutch, sex and hypoxic incubation. Comparative Biochemistry and Physiology Part A,	1.8	6
	Molecular & amp; Integrative Physiology, 2018, 218, 24-34.		
40	Methodology for exposing avian embryos to quantified levels of airborne aromatic compounds	10	17
43	associated with crude oil spills. Environmental Toxicology and Pharmacology, 2018, 58, 163-169.	4.0	17
	Maternal serum concentrations of follicle stimulating hormone and anti-müllerian hormone as		
44	predictors of successful blastocyst development during IVF treatment. Fertility and Sterility, 2018, 110, e358.	1.0	0
45	The Nexus of Development and Environment. , 2018, , 1-5.		2
46	Responses to Environmental Stressors in Developing Animals: Costs and Benefits of Phenotypic		6
	Plasticity. , 2018, , 97-113.		-
45	Combined effects of elevated temperature and Deepwater Horizon oil exposure on the cardiac	0.5	0.0
47	performance of larval mahi-mahi, Coryphaena hippurus. PLoS ONE, 2018, 13, e0203949.	2.5	33
	Developmental phoneturic placticity being bridge stachastic weather events accessisted with alignets		
48	Developmental phenotypic plasticity helps bridge stochastic weather events associated with climate change. Journal of Experimental Biology, 2018, 221, .	1.7	70
49	Marketing via Email Solicitation by Predatory (and Legitimate) Journals: An Evaluation of Quality, Frequency and Relevance. Journal of Librarianship and Scholarly Communication, 2018, 6, .	0.5	1
50	Cardiac function and survival are affected by crude oil in larval red drum, Sciaenops ocellatus.	8.0	87
	Science of the Total Environment, 2017, 579, 797-804.		
	Incubation relative humidity induces renal morphological and physiological remodeling in the embryo		
51	of the chicken (Gallus gallus domesticus). Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2017, 204, 185-196.	1.8	6
52	Metabolic rate and hypoxia tolerance are affected by group interactions and sex in the fruit fly (<i>Drosophila melanogaster</i>): new data and a literature survey. Biology Open, 2017, 6, 471-480.	1.2	19
		4214	
53	Dynamics of acid-base and hematological regulation in day 15 chicken embryos (Gallus gallus) Tj ETQq1 1 0.78	4314 rgB1 1.6	Overlock 10
	2017, 239, 55-63.		
54	Morphology and cardiac physiology are differentially affected by temperature in developing larvae of	1.2	25
54	the marine fish mahi-mahi (<i>Corýphaena hippurus</i>). Biology Open, 2017, 6, 800-809.	1.2	20

#	Article	IF	CITATIONS
55	Cardiorespiratory physiological phenotypic plasticity in developing airâ€breathing anabantid fishes () Tj ETQq1 1 (0.784314 1.7	rgBT /Overlo
56	<i>Xenopus</i> and the art of oxygen maintenance. Journal of Experimental Biology, 2017, 220, 4084-4087.	1.7	0
57	Cardiovascular Development in Embryonic and Larval Fishes. Fish Physiology, 2017, , 107-184.	0.8	16
58	Heart Performance Determination by Visualization in Larval Fishes: Influence of Alternative Models for Heart Shape and Volume. Frontiers in Physiology, 2017, 8, 464.	2.8	16
59	Epigenetics in Insects: Mechanisms, Phenotypes and Ecological and Evolutionary Implications. Advances in Insect Physiology, 2017, 53, 1-30.	2.7	42
60	Critical developmental windows for morphology and hematology revealed by intermittent and continuous hypoxic incubation in embryos of quail (Coturnix coturnix). PLoS ONE, 2017, 12, e0183649.	2.5	8
61	Altered embryonic development in northern bobwhite quail (Colinus virginianus) induced by pre-incubation oscillatory thermal stresses mimicking global warming predictions. PLoS ONE, 2017, 12, e0184670.	2.5	15
62	Cardio-respiratory development in bird embryos: new insights from a venerable animal model. Revista Brasileira De Zootecnia, 2016, 45, 709-728.	0.8	22
63	Interspecific Differences in Metabolic Rate and Metabolic Temperature Sensitivity Create Distinct Thermal Ecological Niches in Lizards (Plestiodon). PLoS ONE, 2016, 11, e0164713.	2.5	12
64	Epigenetic Inheritance and Its Role in Evolutionary Biology: Re-Evaluation and New Perspectives. Biology, 2016, 5, 24.	2.8	153
65	Developmental cardiorespiratory physiology of the air-breathing tropical gar, <i>Atractosteus tropicus</i> . American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R689-R701.	1.8	19
66	Mass Transport: Circulatory System with Emphasis on Nonendothermic Species. , 2016, 7, 17-66.		13
67	Phenotypic developmental plasticity induced by preincubation egg storage in chicken embryos () Tj ETQq1 1 0.78	34314 rgB ⁻ 1.7	$\Gamma / Overlock _{15}$
68	Cross-resistance in Gulf killifish (Fundulus grandis) populations resistant to dioxin-like compounds. Aquatic Toxicology, 2016, 175, 222-231.	4.0	22
69	Circulatory changes associated with the closure of the ductus arteriosus in hatching emu (Dromaius) Tj ETQq1 1 Physiology, 2016, 191, 202-208.	0.784314 1.8	rgBT /Over 10
70	Dynamics of epigenetic phenomena: intergenerational and intragenerational phenotype â€~washout'. Journal of Experimental Biology, 2015, 218, 80-87.	1.7	98
71	Salt sensitivity of the morphometry of <i>Artemia franciscana</i> during development: A demonstration of 3-D critical windows. Journal of Experimental Biology, 2015, 219, 571-81.	1.7	12
72	Hypercapnic thresholds for embryonic acid–base metabolic compensation and hematological regulation during CO2 challenges in layer and broiler chicken strains. Respiratory Physiology and Neurobiology, 2015, 215, 1-12.	1.6	9

#	Article	IF	CITATIONS
73	Developmental Critical Windows and Sensitive Periods as Three-Dimensional Constructs in Time and Space. Physiological and Biochemical Zoology, 2015, 88, 91-102.	1.5	85
74	Challenges and opportunities in developmental integrative physiology. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2015, 184, 113-124.	1.8	47
75	Dynamics of blood viscosity regulation during hypoxic challenges in the chicken embryo (Gallus) Tj ETQq1 1 0.784 Physiology, 2015, 190, 1-8.	314 rgBT 1.8	/Overlock 1 9
76	Chronic hypoxia and hyperoxia modifies morphology and VEGF concentration of the lungs of the developing chicken (Gallus gallus variant domesticus). Respiratory Physiology and Neurobiology, 2015, 219, 85-94.	1.6	15
77	The Physiology of the Avian Embryo. , 2015, , 739-766.		21
78	Deepwater Horizon Oil Spill as a Case Study for Interdisciplinary Cooperation within Developmental Biology, Environmental Sciences and Physiology. World Journal of Engineering and Technology, 2015, 03, 7-23.	0.5	8
79	Hypoxiaâ€induced developmental plasticity of the gills and airâ€breathing organ of <i>Trichopodus trichopterus</i> . Journal of Fish Biology, 2014, 84, 808-826.	1.6	27
80	Comparative cardiovascular physiology: future trends, opportunities and challenges. Acta Physiologica, 2014, 210, 257-276.	3.8	69
81	Environmental modulation of the onset of air breathing and survival of <i>Betta splendens</i> and <i>Trichopodus trichopterus</i> . Journal of Fish Biology, 2014, 84, 794-807.	1.6	19
82	Renal, metabolic and hematological effects of trans-retinoic acid during critical developmental windows in the embryonic chicken. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2014, 184, 107-123.	1.5	3
83	Epigenetics as a source of variation in comparative animal physiology – or – Lamarck is lookin' pretty good these days. Journal of Experimental Biology, 2014, 217, 682-689.	1.7	71
84	Epigenetics in Comparative Biology: Why We Should Pay Attention. Integrative and Comparative Biology, 2014, 54, 7-20.	2.0	59
85	The actions of the renin–angiotensin system on cardiovascular and osmoregulatory function in embryonic chickens (Gallus gallus domesticus). Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2014, 178, 37-45.	1.8	8
86	Dynamics of acid–base metabolic compensation and hematological regulation interactions in response to CO2 challenges in embryos of the chicken (Gallus gallus). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2014, 184, 641-649.	1.5	9
87	Acute regulation of hematocrit and acid–base balance in chicken embryos in response to severe intrinsic hypercapnic hypoxia. Respiratory Physiology and Neurobiology, 2014, 195, 1-10.	1.6	17
88	Environmental stressors and the epigenome. Drug Discovery Today: Technologies, 2014, 12, e3-e8.	4.0	20
89	Ontogeny of hypoxic modulation of cardiac performance and its allometry in the African clawed frog Xenopus laevis. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2013, 183, 123-133.	1.5	2
90	Metanephric kidney development in the chicken embryo: Glomerular numbers, characteristics and perfusion. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2013, 166, 343-350.	1.8	20

Warren Burggren

#	Article	IF	CITATIONS
91	Cardiovascular Development and Angiogenesis in the Early Vertebrate Embryo. Cardiovascular Engineering and Technology, 2013, 4, 234-245.	1.6	22
92	Dynamics of metabolic compensation and hematological changes in chicken (Gallus gallus) embryos exposed to hypercapnia with varying oxygen. Respiratory Physiology and Neurobiology, 2013, 185, 272-280.	1.6	12
93	Reduced Heart Rate and Cardiac Output Differentially Affect Angiogenesis, Growth, and Development in Early Chicken Embryos (<i>Gallus domesticus</i>). Physiological and Biochemical Zoology, 2013, 86, 370-382.	1.5	14
94	ANG II and baroreflex control of heart rate in embryonic chickens (Gallus gallus domesticus). American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R855-R863.	1.8	16
95	Angiotensin II and developmental cardiovascularâ€renal interactions in embryonic chickens. FASEB Journal, 2013, 27, 714.18.	0.5	0
96	Hypoxic level and duration differentially affect embryonic organ system development of the chicken (Gallus gallus). Poultry Science, 2012, 91, 3191-3201.	3.4	36
97	Cardiac and Metabolic Physiology of Early Larval Zebrafish (Danio rerio) Reflects Parental Swimming Stamina. Frontiers in Physiology, 2012, 3, 35.	2.8	21
98	Parental hypoxic exposure confers offspring hypoxia resistance in zebrafish (<i>Danio rerio</i>). Journal of Experimental Biology, 2012, 215, 4208-16.	1.7	71
99	Upper lethal temperatures of Northern Bobwhite embryos and the thermal properties of their eggs. Poultry Science, 2012, 91, 41-46.	3.4	32
100	Transgenerational Variation in Metabolism and Life-History Traits Induced by Maternal Hypoxia in <i>Daphnia magna</i> . Physiological and Biochemical Zoology, 2012, 85, 625-634.	1.5	22
101	Acute regulation of hematocrit and blood acid–base balance during severe hypoxic challenges in late chicken embryos (Gallus gallus). Respiratory Physiology and Neurobiology, 2012, 184, 86-96.	1.6	24
102	Interactions of acid–base balance and hematocrit regulation during environmental respiratory gas challenges in developing chicken embryos (Gallus gallus). Respiratory Physiology and Neurobiology, 2012, 183, 135-148.	1.6	20
103	Modulation of the onset of airâ€breathing of the Siamese Fighting Fish and the Blue Gourami. FASEB Journal, 2012, 26, 1071.9.	0.5	0
104	Embryonic control of heart rate: Examining developmental patterns and temperature and oxygenation influences using embryonic avian models. Respiratory Physiology and Neurobiology, 2011, 178, 84-96.	1.6	33
105	Developmental trajectories, critical windows and phenotypic alteration during cardio-respiratory development. Respiratory Physiology and Neurobiology, 2011, 178, 13-21.	1.6	73
106	Hematocrit and blood osmolality in developing chicken embryos (Gallus gallus): In vivo and in vitro regulation. Respiratory Physiology and Neurobiology, 2011, 179, 142-150.	1.6	15
107	Development of hematological respiratory variables in late chicken embryos: The relative importance of incubation time and embryo mass. Comparative Biochemistry and Physiology Part A, Molecular & amp; Integrative Physiology, 2011, 159, 225-233.	1.8	24
108	Egg yolk environment differentially influences physiological and morphological development of broiler and layer chicken embryos. Journal of Experimental Biology, 2011, 214, 619-628.	1.7	73

#	Article	IF	CITATIONS
109	The silk cocoon of the silkworm, Bombyx mori: Macro structure and its influence on transmural diffusion of oxygen and water vapor. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2010, 155, 259-263.	1.8	55
110	Onset and early development of hypoxic ventilatory responses and branchial neuroepithelial cells in Xenopus laevis. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2010, 157, 382-391.	1.8	14
111	Frontiers in Aquatic Physiology - grand challenge. Frontiers in Physiology, 2010, 1, 6.	2.8	1
112	Metabolic Allometry during Development and Metamorphosis of the Silkworm <i>Bombyx mori</i> : Analyses, Patterns, and Mechanisms. Physiological and Biochemical Zoology, 2010, 83, 215-231.	1.5	22
113	Empowering 21st Century Biology. BioScience, 2010, 60, 923-930.	4.9	24
114	Epigenetics and transgenerational transfer: a physiological perspective. Journal of Experimental Biology, 2010, 213, 3-16.	1.7	294
115	Triiodothyronine (T3) action on aquatic locomotor behavior during metamorphosis of the bullfrog Rana catesbeiana. International Journal of Developmental Biology, 2009, 53, 101-108.	0.6	1
116	Development of cardiac form and function in ectothermic sauropsids. Journal of Morphology, 2009, 270, 1400-1412.	1.2	37
117	Implementation of the National Science Foundation's "Broader Impacts― Efficiency Considerations and Alternative Approaches. Social Epistemology, 2009, 23, 221-237.	1.2	15
118	Chemoreceptive Control of Ventilation in Amphibians and Air-Breathing Fishes. , 2009, , 151-183.		2
119	Physiological study of larval fishes: challenges and opportunities. Scientia Marina, 2009, 73, 99-110.	0.6	27
120	`Blood-doping' effects on hematocrit regulation and oxygen consumption in late-stage chicken embryos (Gallus gallus). Journal of Experimental Biology, 2008, 211, 883-889.	1.7	10
121	Amphibians as Animal Models for Laboratory Research in Physiology. ILAR Journal, 2007, 48, 260-269.	1.8	84
122	Role of Hypoxia in the Evolution and Development of the Cardiovascular System. Antioxidants and Redox Signaling, 2007, 9, 1339-1352.	5.4	50
123	Why respiratory biology? The meaning and significance of respiration and its integrative study. Integrative and Comparative Biology, 2007, 47, 506-509.	2.0	4
124	Evolution of Cardiovascular Systems and Their Endothelial Linings. , 2007, , 29-49.		9
125	Development of endothermic metabolic response in embryos and hatchlings of the emu (Dromaius) Tj ETQq1 1 C).784314 r 1.6	gBT /Overloc
126	Endothermic heart rate response in broiler and White Leghorn chicks (Callus gallus domesticus) during the first two days of post-hatch life. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2007, 147, 529-535.	1.8	15

#	Article	IF	CITATIONS
127	A Threeâ€Dimensional Functional Assessment of Heart and Vessel Development in the Larva of the Zebrafish (Danio rerio). Physiological and Biochemical Zoology, 2006, 79, 194-201.	1.5	65
128	Developing animals flout prominent assumptions of ecological physiology. Comparative Biochemistry and Physiology Part A, Molecular & amp; Integrative Physiology, 2005, 141, 430-439.	1.8	39
129	Assessing physiological complexity. Journal of Experimental Biology, 2005, 208, 3221-3232.	1.7	46
130	COMPARATIVE DEVELOPMENTAL PHYSIOLOGY: An Interdisciplinary Convergence. Annual Review of Physiology, 2005, 67, 203-223.	13.1	40
131	The interplay of cutaneous water loss, gas exchange and blood flow in the toad, Bufo woodhousei: adaptations in a terrestrially adapted amphibian. Journal of Experimental Biology, 2005, 208, 105-112.	1.7	25
132	Hypoxic incubation creates differential morphological effects during specific developmental critical windows in the embryo of the chicken (Gallus gallus). Respiratory Physiology and Neurobiology, 2005, 145, 251-263.	1.6	91
133	Maturation of the homeothermic response of heart rate to altered ambient temperature in developing chick hatchlings (Gallus gallus domesticus). American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 286, R129-R137.	1.8	16
134	Acclimation to hypothermic incubation in developing chicken embryos(Gallus domesticus). Journal of Experimental Biology, 2004, 207, 1543-1552.	1.7	49
135	Acclimation to hypothermic incubation in developing chicken embryos(Gallus domesticus). Journal of Experimental Biology, 2004, 207, 1553-1561.	1.7	24
136	Body, eye, and chorioallantoic vessel growth are not dependent on cardiac output level in day 3–4 chicken embryos. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287, R1399-R1406.	1.8	25
137	What Is the Purpose of the Embryonic Heart Beat? or How Facts Can Ultimately Prevail over Physiological Dogma. Physiological and Biochemical Zoology, 2004, 77, 333-345.	1.5	80
138	Development of physiological regulatory systems: altering the timing of crucial events. Zoology, 2003, 106, 91-99.	1.2	102
139	Heart rate responses to cooling in emu hatchlings. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2003, 134, 829-838.	1.8	11
140	Cardiac rhythms of late pre-pipped and pipped chick embryos exposed to altered oxygen environments. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2003, 136, 289-299.	1.8	19
141	Maturation of cardiovascular control mechanisms in the embryonic emu(Dromiceius) Tj ETQq1 1 0.784314 rgBT μ	Overlock I	1945f 50 182
142	Clutch Effects Explain Heart Rate Variation in Embryonic Frogs (Cave Coqui, Eleutherodactylus) Tj ETQq0 0 0 rgBT	/Overlock	2 10 Tf 50 14
143	Cardiovascular regulation during hypoxia in embryos of the domestic chicken Gallus gallus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R219-R226.	1.8	59
144	Chronic hypoxia alters the physiological and morphological trajectories of developing chicken embryos. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2002, 131, 713-724.	1.8	109

#	Article	IF	CITATIONS
145	Cardiac rhythms in prenatal and perinatal emu embryos. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2002, 131, 775-785.	1.8	16
146	Cardiac rhythms in developing emu hatchlings. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2002, 131, 787-795.	1.8	10
147	Comparative cardiovascular development: improving the conceptual framework. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2002, 132, 661-674.	1.8	25
148	Cardiomyopathy in zebrafish due to mutation in an alternatively spliced exon of titin. Nature Genetics, 2002, 30, 205-209.	21.4	243
149	Growth and metabolism of larval zebrafish: effects of swim training. Journal of Experimental Biology, 2001, 204, 4335-4343.	1.7	101
150	Growth and metabolism of larval zebrafish: effects of swim training. Journal of Experimental Biology, 2001, 204, 4335-43.	1.7	75
151	Developmental changes in in vivo cardiac performance in the moth Manduca sexta. Journal of Experimental Biology, 2000, 203, 369-78.	1.7	24
152	Continuous measurements of instantaneous heart rate and its fluctuations before and after hatching in chickens. Journal of Experimental Biology, 2000, 203, 895-903.	1.7	30
153	Physiological variability in neonatal armadillo quadruplets: within- and between-litter differences. Journal of Experimental Biology, 2000, 203, 1733-40.	1.7	19
154	Interruption of cardiac output does not affect short-term growth and metabolic rate in day 3 and 4 chick embryos. Journal of Experimental Biology, 2000, 203, 3831-8.	1.7	42
155	O ₂ consumption and heart rate in developing zebrafish (<i>Danio rerio</i>): influence of temperature and ambient O ₂ . American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 276, R505-R513.	1.8	146
156	Heart rate responses to altered ambient oxygen in early (days 3-9) chick embryos in the intact egg. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1999, 169, 85-92.	1.5	29
157	Genetic, environmental and maternal influences on embryonic cardiac rhythms. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 1999, 124, 423-427.	1.8	22
158	Cardio-respiratory ontogeny during chronic carbon monoxide exposure in the clawed frog Xenopus laevis Journal of Experimental Biology, 1998, 201, 1461-1472.	1.7	56
159	Cardio-respiratory ontogeny during chronic carbon monoxide exposure in the clawed frog Xenopus laevis. Journal of Experimental Biology, 1998, 201, 1461-72.	1.7	40
160	Identifying and Evaluating Patterns in Cardiorespiratory Physiology. American Zoologist, 1997, 37, 109-115.	0.7	10
161	Disruption of Hemoglobin Oxygen Transport Does Not Impact Oxygen-Dependent Physiological Processes in Developing Embryos of Zebra Fish (<i>Danio rerio</i>). Circulation Research, 1996, 79, 358-362.	4.5	260
162	Metabolic, Ventilatory, and Acid-Base Responses Associated with Specific Dynamic Action in the Toad Bufo marinus. Physiological Zoology, 1995, 68, 192-205.	1.5	51

#	Article	IF	CITATIONS
163	Cardiac output and peripheral resistance during larval development in the anuran amphibian Xenopus laevis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1995, 269, R1126-R1132.	1.8	26
164	Blood pressures and heart rate during larval development in the anuran amphibian Xenopus laevis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1995, 269, R1120-R1125.	1.8	17
165	Fixed patterns of bradycardia during late embryonic development in domestic fowl with C locus mutations. American Journal of Physiology - Heart and Circulatory Physiology, 1995, 268, H56-H60.	3.2	8
166	Central Cardiovascular Function in Amphibians: Qualitative Influences of Phylogeny, Ontogeny, and Season. Advances in Comparative and Environmental Physiology, 1995, , 175-197.	0.5	9
167	Embryonic Heart Rate in Altricial Birds, the Pigeon (<i>Columba domestica</i>) and the Bank Swallow (<i>Riparia riparia</i>). Physiological Zoology, 1994, 67, 1448-1460.	1.5	39
168	The Respiratory Transition from Water to Air Breathing During Amphibian Metamorphosis. American Zoologist, 1994, 34, 238-246.	0.7	125
169	Patterns of form and function in developing hearts: contributions from non-mammalian vertebrates. Cardioscience, 1994, 5, 183-91.	0.5	41
170	Developmental changes in the acetylcholine influence on heart muscle ofRana catesbeiana: in situ and in vitro effects. The Journal of Experimental Zoology, 1993, 267, 1-8.	1.4	16
171	Specific dynamic action and the metabolism of the brachyuran land crabs Ocypode quadrata (Fabricius, 1787), Goniopsis cruentata (Latreille, 1803) and Cardisoma guanhumi Latreille, 1825. Journal of Experimental Marine Biology and Ecology, 1993, 169, 117-130.	1.5	29
172	Metabolism and Ram Gill Ventilation in Juvenile Paddlefish, <i>Polyodon spathula</i> (Chondrostei:) Tj ETQq0 0 0	rgBT/Ove 1.5	rlock 10 Tf 50
173	Development of blood pressure and cardiac reflexes in the frog Pseudis paradoxsus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1992, 263, R602-R608.	1.8	9
174	Ontogeny of Cardiovascular and Respiratory Physiology in Lower Vertebrates. Annual Review of Physiology, 1991, 53, 107-135.	13.1	189
175	Central arterial hemodynamics in larval bullfrogs (Rana catesbeiana): developmental and seasonal influences. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1991, 260, R240-R246.	1.8	13
176	Air Exposure and Physiological Compensation in a Tropical Intertidal Chiton, <i>Chiton stokesii</i> (Mollusca: Polyplacophora). Physiological Zoology, 1991, 64, 728-747.	1.5	17
177	Heart Rate and Hemolymph Pressure Responses to Hemolymph Volume Changes in the Land Crab Cardisoma guanhumi: Evidence for "Baroreflex" Regulation. Physiological Zoology, 1990, 63, 167-181.	1.5	12
178	Developmental Changes in Cardiac and Metabolic Physiology of the Direct-Developing Tropical Frog Eleutherodactylus Coqui. Journal of Experimental Biology, 1990, 152, 129-147.	1.7	24
179	Interaction of allometry and development in the mouse Mus musculus: heart rate and hematology. Respiration Physiology, 1989, 78, 265-280.	2.7	15
180	Factors terminating nonventilatory periods in the turtle, Chelydra serpentina. Respiration Physiology, 1989, 77, 337-349.	2.7	19

#	Article	IF	CITATIONS
181	Arterial Oâ,, Homeostasis during Diving in the Turtle Chelodina longicollis. Physiological Zoology, 1989, 62, 668-686.	1.5	30
182	Cardiac design in lower vertebrates: what can phylogeny reveal about ontogeny?. Experientia, 1988, 44, 919-930.	1.2	40
183	Cardiovascular responses to diving and their relation to lung and blood oxygen stores in vertebrates. Canadian Journal of Zoology, 1988, 66, 20-28.	1.0	20
184	Role of the Central Circulation in Regulation of Cutaneous Gas Exchange. American Zoologist, 1988, 28, 985-998.	0.7	14
185	Form and Function in Reptilian Circulations. American Zoologist, 1987, 27, 5-19.	0.7	76
186	Allometry of red cell oxygen binding and hematology in larvae of the salamander, Ambystoma tigrinum. Respiration Physiology, 1987, 70, 73-84.	2.7	10
187	Respiratory Physiology of Intestinal Air Breathing in the Teleost Fish <i>Misgurnus Anguillicaudatus</i> . Journal of Experimental Biology, 1987, 133, 371-393.	1.7	67
188	Ontogeny of regulation of gill and lung ventilation in the bullfrog, Rana catesbeiana. Respiration Physiology, 1986, 66, 279-291.	2.7	60
189	Pulmonary fluid balance following pulmocutaneous baroreceptor denervation in the toad. Journal of Applied Physiology, 1986, 61, 331-337.	2.5	18
190	The action of acetylcholine upon heart rate changes markedly with development in bullfrogs. The Journal of Experimental Zoology, 1986, 240, 137-140.	1.4	18
191	Circulation and respiration in lungfishes (dipnoi). Journal of Morphology, 1986, 190, 217-236.	1.2	84
192	Effect of experimental ventilation of the skin on cutaneous gas exchange in the bullfrog. Journal of Experimental Biology, 1986, 121, 445-9.	1.7	15
193	Gas Exchange, Metabolism, and "Ventilation" in Gelatinous Frog Egg Masses. Physiological Zoology, 1985, 58, 503-514.	1.5	56
194	Skin Breathing in Vertebrates. Scientific American, 1985, 253, 126-142.	1.0	34
195	CUTANEOUS GAS EXCHANGE IN VERTEBRATES: DESIGN, PATTERNS, CONTROL AND IMPLICATIONS. Biological Reviews, 1985, 60, 1-45.	10.4	246
196	Respiration in Phyletically Ancient Fishes. , 1985, , 217-252.		9
197	Ventilation, Circulation and Their Interactions in the Land Crab, <i>Cardisoma Guanhumi</i> . Journal of Experimental Biology, 1985, 117, 133-154.	1.7	26
198	A Rotating Respirometer to Monitor Voluntary Activity and Associated Exchange of Respiratory Gases in the Land Hermit Crab (<i>Coenobita Compressus</i>). Journal of Experimental Biology, 1985, 119, 85-101.	1.7	8

#	Article	IF	CITATIONS
199	The Regulation of Cutaneous Gas Exchange in Vertebrates. Proceedings in Life Sciences, 1985, , 101-113.	0.5	4
200	Factors influencing pulmonary and cutaneous arterial blood flow in the toad, Bufo marinus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1984, 247, R884-R894.	1.8	12
201	THE EFFECTS OF TEMPERATURE AND WATER AVAILABILITY ON ION AND ACID-BASE BALANCE IN HEMOLYMPH OF THE LAND HERMIT CRABCOENOBITA CLYPEATUS. Biological Bulletin, 1984, 166, 427-445.	1.8	20
202	â€~Active' regulation of cutaneous exchange by capillary recruitment in amphibians: Experimental evidence and a revised model for skin respiration. Respiration Physiology, 1984, 55, 379-392.	2.7	79
203	Transition of respiratory processes during amphibian metamorphosis: from egg to adult. , 1984, , 31-53.		21
204	Venous Return and Cardiac Filling in Varanid Lizards. Journal of Experimental Biology, 1984, 113, 389-399.	1.7	26
205	Lactate Production, Tissue Distribution, and Elimination following Exhaustive Exercise in Larval and Adult Bullfrogs Rana catesbeiana. Physiological Zoology, 1983, 56, 597-613.	1.5	17
206	An Analysis of Scaphognathite Pumping Performance in the Crayfish Orconectes virilis: Compensatory Changes to Acute and Chronic Hypoxic Exposure. Physiological Zoology, 1983, 56, 309-318.	1.5	23
207	Temperature and the Balance between Aerial and Aquatic Respiration in Larvae of Rana berlandieri and Rana catesbeiana. Physiological Zoology, 1983, 56, 263-273.	1.5	40
208	Reflex interactions between aerial and aquatic gas exchange organs in larval bullfrogs. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1983, 244, R770-R777.	1.8	11
209	Pulmonary Blood Plasma Filtration in Reptiles: A "Wet" Vertebrate Lung?. Science, 1982, 215, 77-78.	12.6	51
210	"Air Gulping" Improves Blood Oxygen Transport during Aquatic Hypoxia in the Goldfish Carassius auratus. Physiological Zoology, 1982, 55, 327-334.	1.5	96
211	Changing respiratory importance of gills, lungs and skin during metamorphosis in the bullfrog rana catesbeiana. Respiration Physiology, 1982, 47, 151-164.	2.7	132
212	Gill and lung ventilatory responses to steady-stae aquatic hypoxia and hyperoxia in the bullfrog tadpole. Respiration Physiology, 1982, 47, 165-176.	2.7	82
213	Ventricular Haemodynamics in the Monitor Lizard <i>Varanus Exanthematicus</i> : Pulmonary and Systemic Pressure Separation. Journal of Experimental Biology, 1982, 96, 343-354.	1.7	88
214	Oxygen Uptake during Environmental Temperature Change in Hermit Crabs: Adaptation to Subtidal, Intertidal, and Supratidal Habitats. Physiological Zoology, 1981, 54, 325-333.	1.5	31
215	Pulmonary diffusing capacity of the bullfrog <i>(Rana catesbeiana)</i> . Acta Physiologica Scandinavica, 1981, 113, 485-490.	2.2	14
216	Acid-base balance following temperature acclimation in land crabs. The Journal of Experimental Zoology, 1981, 218, 45-52.	1.4	19

#	Article	IF	CITATIONS
217	Hemolymph oxygen transport, acid-base status, and hydromineral regulation during dehydration in three terrestrial crabs,Cardisoma,Birgus, andCoenobita. The Journal of Experimental Zoology, 1981, 218, 53-64.	1.4	45
218	Respiration and acid-base balance in the salamander,Ambystoma tigrinum: Influence of temperature acclimation and metamorphosis. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1981, 144, 241-246.	1.5	31
219	Anaerobic metabolism, gas exchange, and acid-base balance during hypoxic exposure in the channel catfish,Ictalurus punctatus. The Journal of Experimental Zoology, 1980, 213, 405-416.	1.4	57
220	Cardiovascular Function in the Lower Vertebrates. , 1980, , 61-117.		22
221	Branchial circulation and gill morphometrics in the sturgeon Acipenser transmontanus, an ancient Chondrosteian fish. Canadian Journal of Zoology, 1979, 57, 2160-2170.	1.0	17
222	Respiration and Adaptation to the Terrestrial Habitat in the Land Hermit Crab <i>Coenobita Clypeatus</i> . Journal of Experimental Biology, 1979, 79, 265-281.	1.7	74
223	Biomodal Gas Exchange During Variation in Environmental Oxygen and Carbon Dioxide in the Air Breathing Fish <i>Trichogaster Trichopterus</i> . Journal of Experimental Biology, 1979, 82, 197-213.	1.7	76
224	Gas Exchange and Transport During Intermittent Breathing in Chelonian Reptiles. Journal of Experimental Biology, 1979, 82, 75-92.	1.7	120
225	Intrapulmonary variation of gas partial pressures and ventilation inequalities in chelonian reptiles. Journal of Comparative Physiology â–¡ B, 1978, 126, 203-209.	2.0	8
226	Gill ventilation in the sturgeon, Acipenser transmontanus: Unusual adaptations for bottom dwelling. Respiration Physiology, 1978, 34, 153-170.	2.7	44
227	Oxygen uptake and transport during hypoxic exposure in the sturgeon Acipenser transmontanus. Respiration Physiology, 1978, 34, 171-183.	2.7	98
228	Influence of intermittent breathing on ventricular depolarization patterns in chelonian reptiles Journal of Physiology, 1978, 278, 349-364.	2.9	28
229	Ventilation in An Aquatic and A Terrestrial Chelonian Reptile. Journal of Experimental Biology, 1978, 72, 165-179.	1.7	51
230	Ventilation in an aquatic and a terrestrial chelonian reptile. Journal of Experimental Biology, 1978, 72, 165-79.	1.7	36
231	Pulmonary stretch receptors regulate heart rate and pulmonary blood flow in the turtle, Pseudemys scripta. Comparative Biochemistry and Physiology A, Comparative Physiology, 1977, 58, 185-191.	0.6	23
232	Circulation during intermittent lung ventilation in the garter snake <i>Thamnophis</i> . Canadian Journal of Zoology, 1977, 55, 1720-1725.	1.0	30
233	Pulmonary ventilation: perfusion relationships in terrestrial and aquatic chelonian reptiles. Canadian Journal of Zoology, 1977, 55, 2024-2034.	1.0	36
234	The pulmonary circulation of the chelonian reptile: Morphology, haemodynamics and pharmacology. Journal of Comparative Physiology â–¡ B, 1977, 116, 303-323.	2.0	65

#	Article	IF	CITATIONS
235	The Persistence of a Patent Ductus Arteriosus in an Adult Specimen of the Tortoise Testudo graeca. Copeia, 1976, 1976, 405.	1.3	6
236	A quantitative analysis of ventilation tachycardia and its control in two chelonians, <i>Pseudemys scripta</i> and <i>Testudo graeca</i> . Journal of Experimental Biology, 1975, 63, 367-380.	1.7	62
237	A quantitative analysis of ventilation tachycardia and its control in two chelonians, Pseudemys scripta and Testudo graeca. Journal of Experimental Biology, 1975, 63, 367-80.	1.7	39
238	Branchial water- and blood-flow patterns and the structure of the gill of the crayfish Procambarus clarkii. Canadian Journal of Zoology, 1974, 52, 1511-1518.	1.0	45
239	Respiratory Responses to Long-Term Hypoxic Stress in the Crayfish <i>Orconectes Virilis</i> . Journal of Experimental Biology, 1974, 60, 195-206.	1.7	74
240	Interdisciplinarity in the Biological Sciences. , 0, , 101-113.		4