Simon Steinberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1447900/publications.pdf

Version: 2024-02-01

430874 477307 41 944 18 29 g-index citations h-index papers 49 49 49 837 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Chemical Reactions and Phase Stabilities in the Si–Te System at High Pressures and High Temperatures. Inorganic Chemistry, 2022, 61, 7349-7357.	4.0	O
2	Examination of a Structural Preference in Quaternary Alkali-Metal (A) Rare-Earth (R) Copper Tellurides by Combining Experimental and Quantum-chemical Means. Inorganic Chemistry, 2022, 61, 9269-9282.	4.0	6
3	Approaching the Glass Transition Temperature of GeTe by Crystallizing Ge ₁₅ Te ₈₅ . Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000478.	2.4	12
4	Eu ₂ CuSe ₃ Revisited by Means of Experimental and Quantumâ€Chemical Techniques. European Journal of Inorganic Chemistry, 2021, 2021, 1510-1517.	2.0	9
5	Longâ€Range Forces in Rockâ€Saltâ€Type Tellurides and How they Mirror the Underlying Chemical Bonding. Advanced Materials, 2021, 33, e2100163.	21.0	26
6	Sr7N2Sn3: a layered antiperovskite-type nitride stannide containing zigzag chains of Sn4 polyanions. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2021, .	0.7	1
7	Exploring the frontier between polar intermetallics and Zintl phases for the examples of the prolific ALnTnTe ₃ -type alkali metal (A) lanthanide (Ln) late transition metal (Tn) tellurides. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2021, 76, 635-642.	0.7	4
8	Bonding diversity in rock salt-type tellurides: examining the interdependence between chemical bonding and materials properties. RSC Advances, 2021, 11, 20679-20686.	3.6	14
9	Revealing the Bonding Nature in an ALnZnTe3-Type Alkaline-Metal (A) Lanthanide (Ln) Zinc Telluride by Means of Experimental and Quantum-Chemical Techniques. Crystals, 2020, 10, 916.	2.2	10
10	Lead Chalcogenides: Discovering Electronâ€Transferâ€Driven Changes in Chemical Bonding in Lead Chalcogenides (PbX, where X = Te, Se, S, O) (Adv. Mater. 49/2020). Advanced Materials, 2020, 32, 2070370.	21.0	1
11	Discovering Electronâ€Transferâ€Driven Changes in Chemical Bonding in Lead Chalcogenides (PbX, where) Tj ET	Qq1 1 0.7 	/84314 rgBT /(
12	Probing the Validity of the Zintlâ^'Klemm Concept for Alkaline-Metal Copper Tellurides by Means of Quantum-Chemical Techniques. Materials, 2020, 13, 2178.	2.9	11
13	Revisiting the Zintlâ€'Klemm Concept for ALn2Ag3Te5-Type Alkaline-Metal (A) Lanthanide (Ln) Silver Tellurides. Crystals, 2020, 10, 184.	2.2	12
14	Identifying the Origins of Vacancies in the Crystal Structures of Rock Salt-type Chalcogenide Superconductors. ACS Omega, 2019, 4, 15721-15728.	3.5	7
15	Revealing the Nature of Chemical Bonding in an ALn2Ag3Te5-Type Alkaline-Metal (A) Lanthanide (Ln) Silver Telluride. Inorganics, 2019, 7, 70.	2.7	12
16	Development of a robust tool to extract Mulliken and LÃ \P wdin charges from plane waves and its application to solid-state materials. RSC Advances, 2019, 9, 29821-29830.	3.6	77
17	The Mineral Stýtzite: a Zintl-Phase or Polar Intermetallic? A Case Study Using Experimental and Quantum-Chemical Techniques. Inorganic Chemistry, 2018, 57, 412-421.	4.0	17
18	Fermi-Level Characteristics of Potential Chalcogenide Superconductors. Chemistry of Materials, 2018, 30, 2251-2261.	6.7	15

#	Article	IF	Citations
19	Revealing Tendencies in the Electronic Structures of Polar Intermetallic Compounds. Crystals, 2018, 8, 80.	2.2	27
20	The Crystal Orbital Hamilton Population (COHP) Method as a Tool to Visualize and Analyze Chemical Bonding in Intermetallic Compounds. Crystals, 2018, 8, 225.	2.2	199
21	Magnetocaloric Behavior in Ternary Europium Indides EuT ₅ In: Probing the Design Capability of First-Principles-Based Methods on the Multifaceted Magnetic Materials. Chemistry of Materials, 2017, 29, 2599-2614.	6.7	29
22	Unexpected Ge–Ge Contacts in the Twoâ€Dimensional Ge ₄ Se ₃ Te Phase and Analysis of Their Chemical Cause with the Density of Energy (DOE) Function. Angewandte Chemie - International Edition, 2017, 56, 10204-10208.	13.8	64
23	Highâ€Pressure NiAsâ€Type Modification of FeN. Angewandte Chemie - International Edition, 2017, 56, 7302-7306.	13.8	43
24	Layered Structures and Disordered Polyanionic Nets in the Cation-Poor Polar Intermetallics CsAu1.4Ga2.8 and CsAu2Ga2.6. Crystal Growth and Design, 2017, 17, 693-700.	3.0	4
25	Breaking the paradigm: record quindecim charged magnetic ionic liquids. Materials Horizons, 2017, 4, 217-221.	12.2	20
26	Revisiting the Si–Te System: SiTe ₂ Finally Found by Means of Experimental and Quantum-Chemical Techniques. Inorganic Chemistry, 2017, 56, 11398-11405.	4.0	21
27	Revealing the Nature of Bonding in Rareâ€Earth Transitionâ€Metal Tellurides by Means of Methods Based on First Principles. European Journal of Inorganic Chemistry, 2017, 2017, 3395-3400.	2.0	19
28	Eine NiAsâ€artige Hochdruckmodifikation von FeN. Angewandte Chemie, 2017, 129, 7408-7412.	2.0	2
29	Gold in the Layered Structures of R ₃ Au ₇ Sn ₃ : From Relativity to Versatility. Crystal Growth and Design, 2016, 16, 5657-5668.	3.0	18
30	Search for the Mysterious SiTeâ€"An Examination of the Binary Siâ€"Te System Using First-Principles-Based Methods. Crystal Growth and Design, 2016, 16, 6152-6155.	3.0	23
31	Electron Counting Rules and Electronic Structure in Tetrameric Transition-Metal (T)-Centered Rare-Earth (R) Cluster Complex Halides (X). Inorganic Chemistry, 2015, 54, 1026-1037.	4.0	22
32	Gold-rich R ₃ Au ₇ Sn ₃ : establishing the interdependence between electronic features and physical properties. Journal of Materials Chemistry C, 2015, 3, 8311-8321.	5 . 5	20
33	From the Ternary Eu(Au/In) ₂ and EuAu ₄ (Au/In) ₂ with Remarkable Au/In Distributions to a New Structure Type: The Gold-Rich Eu ₅ Au ₁₆ (Au/In) ₆ Structure. Inorganic Chemistry, 2015, 54, 8187-8196.	4.0	23
34	Cation-Poor Complex Metallic Alloys in Ba(Eu)â€"Auâ€"Al(Ga) Systems: Identifying the Keys that Control Structural Arrangements and Atom Distributions at the Atomic Level. Inorganic Chemistry, 2015, 54, 10296-10308.	4.0	30
35	Crystal Structure and Bonding in BaAu5Ga2 and AeAu4+xGa3–x (Ae = Ba and Eu): Hexagonal Diamond-Type Au Frameworks and Remarkable Cation/Anion Partitioning in the Ae–Au–Ga Systems. Inorganic Chemistry, 2015, 54, 1010-1018.	4.0	21
36	Oligomeric rare-earth metal cluster complexes with endohedral transition metal atoms. Journal of Solid State Chemistry, 2014, 219, 159-167.	2.9	5

3

SIMON STEINBERG

#	Article	IF	CITATIONS
37	Nickel hexayttrium decaiodide, [NiY6]I10. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, i26-i26.	0.2	1
38	Change of magnetic and electronic features through subtle substitution in cubic, non-centrosymmetric extended rare-earth metal cluster complexes {TR3}X3. Journal of Solid State Chemistry, 2013, 206, 176-181.	2.9	7
39	The Prolific { <i>ZR</i> ₆ } <i>X</i> ₁₂ <i>R</i> and { <i>ZR</i> ₆ } <i>X</i> ₁₀ Structure Types with Isolated Endohedrally Stabilized (<i>Z</i>) Rareâ€Earth Metal (<i>R</i>) Cluster Halide (<i>X</i>) Complexes. Zeitschrift Fur Anorganische Und Allgemeine Chemie. 2012. 638. 1922-1931.	1.2	21
40	Identifying a Structural Preference in Reduced Rare-Earth Metal Halides by Combining Experimental and Computational Techniques. Inorganic Chemistry, 2012, 51, 11356-11364.	4.0	29
41	Rb3Er4Cu5Te10: exploring the frontier between polar intermetallics and Zintlâ€phases via experimental and quantumchemical approaches. European Journal of Inorganic Chemistry, 0, , .	2.0	4