Bejar Moez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1446600/publications.pdf

Version: 2024-02-01

106	1,945	23	38
papers	citations	h-index	g-index
106	106	106	1212
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Structural, magnetic and magnetocaloric properties of the lanthanum deficient in La0.8Ca0.2â^xâ−¡xMnO3 (x=0–0.20) manganites oxides. Journal of Alloys and Compounds, 2011, 509, 7410-7415.	5.5	92
2	Electrical conductivity and dielectric analysis of La0.75(Ca,Sr)0.25Mn0.85Ga0.15O3 perovskite compound. Journal of Alloys and Compounds, 2012, 536, 173-178.	5.5	84
3	Structural, electrical and ethanol sensing properties of double-doping LaFeO3 perovskite oxides. Ceramics International, 2014, 40, 14367-14373.	4.8	82
4	Electrical conductivity and ac dielectric properties of La0.8Ca0.2-Pb FeO3 (x= 0.05, 0.10 and 0.15) perovskite compounds. Journal of Alloys and Compounds, 2015, 653, 506-512.	5.5	60
5	Effect of oxygen vacancies on SrTiO electrical properties. Journal of Alloys and Compounds, 2017, 723, 894-903.	5.5	59
6	Magnetocaloric effect at room temperature in powder of La0.5(CaSr)0.5MnO3. Journal of Alloys and Compounds, 2006, 414, 31-35.	5.5	58
7	Effect of calcium deficiency on the critical behavior near the paramagnetic to ferromagnetic phase transition temperature in La0.8Ca0.2MnO3 oxides. Journal of Magnetism and Magnetic Materials, 2012, 324, 2142-2146.	2.3	58
8	Raman, EPR and ethanol sensing properties of oxygen-Vacancies SrTiO 3- δcompounds. Applied Surface Science, 2017, 426, 386-390.	6.1	54
9	The effect of the annealing temperature on the structural and magnetic properties of the manganites compounds. Journal of Alloys and Compounds, 2009, 475, 46-50.	5.5	53
10	Influence of A-site cation size-disorder on structural, magnetic and magnetocaloric properties of La0.7Ca0.3â^'xKxMnO3 compounds. Journal of Alloys and Compounds, 2007, 440, 36-42.	5.5	51
11	Influence of Ca-deficiency on the magneto-transport properties in La0.8Ca0.2MnO3 perovskite and estimation of magnetic entropy change. Journal of Applied Physics, 2012, 111, 103909-1039096.	2.5	48
12	Large magnetic entropy change at room temperature in La0.7Ca0.3â^'xKxMnO3. Journal of Alloys and Compounds, 2007, 442, 136-138.	5.5	44
13	Magnetocaloric study, critical behavior and spontaneous magnetization estimation in La _{0.6} Ca _{0.3} Sr _{0.1} MnO ₃ perovskite. RSC Advances, 2018, 8, 9430-9439.	3.6	42
14	New complex magnetic materials for an application in Ericsson refrigerator. Solid State Communications, 2009, 149, 969-972.	1.9	40
15	Dielectric properties and alternating current conductivity of sol–gel made La0.8Ca0.2FeO3 compound. Chemical Physics Letters, 2015, 637, 7-12.	2.6	38
16	The effect of the B-site size on the structural, magnetic and electrical properties of La0.7Ca0.3MnO3â^Î compounds. Journal of Magnetism and Magnetic Materials, 2007, 311, 512-516.	2.3	37
17	Theoretical investigation of the magnetocaloric effect of La0.7(Ba, sr)0.3MnO3 compound at room temperature with a second-order magnetic phase transition. Ceramics International, 2015, 41, 10654-10658.	4.8	37
18	Magnetic, Raman and Mössbauer properties of double-doping LaFeO3 perovskite oxides. Materials Chemistry and Physics, 2015, 149-150, 467-472.	4.0	37

#	Article	IF	CITATIONS
19	Critical behavior in Ga-doped manganites La0.75(Sr,Ca)0.25Mn1â°'xGaxO3 (0â‰xâ‰0.1). Journal of Magnetism and Magnetic Materials, 2012, 324, 3122-3128.	2.3	34
20	Theoretical investigation of the magnetocaloric effect on La0.7(Ba, Sr)0.3Mn0.9Ga0.1O3 compound at room temperature. Journal of Magnetism and Magnetic Materials, 2015, 386, 81-84.	2.3	32
21	Effect of Ga substitution on magnetocaloric effect in La0.7(Ba, Sr)0.3Mn1â^'xGaxO3 (0.0â%x â%0.20) polycrystalline at room temperature. Journal of Magnetism and Magnetic Materials, 2016, 399, 143-148.	2.3	26
22	Electrical conductivity and dielectric analysis of the perovskite La0.7Ca0.3â^'xKxMnO3 (, 0.05 and 0.10). Solid State Communications, 2008, 148, 577-581.	1.9	25
23	Electrical and dielectric properties of the Ca2MnO4â^Î^system. Solid State Communications, 2011, 151, 1331-1335.	1.9	25
24	Structural, magnetic and magnetocaloric properties of AMn1â^'xGaxO3 compounds with 0â%xâ%0.2. Physica B: Condensed Matter, 2012, 407, 2566-2572.	2.7	25
25	Effect of the oxygen deficiencies creation on the suppression of the diamagnetic behavior of SrTiO3 compound. Journal of Alloys and Compounds, 2016, 680, 560-564.	5.5	23
26	Prediction of magnetocaloric effect in La0.6Ca0.4 \hat{a} °xSrxMnO3 compounds for x=0, 0.05 and 0.4 with phenomenological model. Ceramics International, 2016, 42, 697-704.	4.8	23
27	Structural and NH3 gas-sensing properties of La0.8Ca0.1Pb0.1Fe1-Co O3 (0.00 ≠x ≠0.20) perovskite compounds. Journal of Alloys and Compounds, 2018, 731, 655-661.	5.5	23
28	Oxygen-vacancy-related giant permittivity and ethanol sensing response in SrTiO3- ceramics. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 108, 317-325.	2.7	23
29	Structural, morphological, Raman and ac electrical properties of the multiferroic sol-gel made Bi0.8Er0.1Ba0.1Fe0.96Cr0.02Co0.02O3 material. Journal of Alloys and Compounds, 2019, 775, 304-315.	5.5	23
30	Magnetocaloric effect on strontium vacancies in polycrystalline La0.7Sr0.3â^'xâ-¡xMnO3. Journal of Magnetism and Magnetic Materials, 2007, 316, e566-e568.	2.3	22
31	Structural and magnetic properties and evidence of spin-glass behavior induced by Fe-doping in perovskite manganites B-site. Materials Characterization, 2011, 62, 243-247.	4.4	22
32	Modulation of magnetism and study of impedance and alternating current conductivity of ZnO.4NiO.6Fe2O4 spinel ferrite. Journal of Molecular Structure, 2019, 1184, 298-304.	3.6	22
33	Magnetocaloric effect in the vicinity of second order antiferromagnetic transition of Er2Mn2O7 compound at different applied magnetic field. Journal of Alloys and Compounds, 2013, 563, 28-32.	5.5	21
34	Green photoluminescence in GdAlO3â^'δ powders. Materials Letters, 2014, 128, 235-237.	2.6	21
35	Structure, Raman, dielectric behavior and electrical conduction mechanism of strontium titanate. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 99, 75-81.	2.7	21
36	Charge ordering analysis by electrical and dielectric measurements in Ca2â^'xPrxMnO4 (x=0â€"0.2) compounds. Journal of Alloys and Compounds, 2011, 509, 6447-6451.	5.5	20

#	Article	IF	CITATIONS
37	Evaluation of the relationship between the magnetism and the optical properties in SrTiO3-δ defective systems: Experimental and theoretical studies. Journal of Magnetism and Magnetic Materials, 2019, 478, 175-186.	2.3	20
38	Synthesis, Magnetic Properties, Magnetic Entropy and Arrot Plot of Antiferromagnetic Frustrated Er2Ti2O7 Compound. Journal of Superconductivity and Novel Magnetism, 2012, 25, 1035-1042.	1.8	19
39	Effects of substituting divalent by monovalent ion on the physical properties of La0.7Ca0.3â^'xKxMnO3 compounds. Journal of Magnetism and Magnetic Materials, 2007, 316, e707-e709.	2.3	17
40	Blue-green photoluminescence in BaZrO 3â^'δ powders. Chemical Physics Letters, 2014, 610-611, 341-344.	2.6	17
41	Effect of annealing temperature on structural, morphological and dielectric properties of La0.8Ba0.1Ce0.1FeO3 perovskite. Journal of Materials Science: Materials in Electronics, 2020, 31, 16220-16234.	2.2	16
42	Effect of Bi-substitution into the A-site of multiferroic La _{0.8} Ca _{0.2} FeO ₃ on structural, electrical and dielectric properties. RSC Advances, 2020, 10, 16132-16146.	3.6	16
43	altimg="si4.svg"> <mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">L</mml:mi><mml:mi mathvariant="normal">a</mml:mi></mml:mrow><mml:mrow><mml:mn>0.885</mml:mn></mml:mrow>P<mml:mi< td=""><td>ısub><mn< td=""><td>าl:15 nl:msub> < m</td></mn<></td></mml:mi<></mml:msub></mml:mrow>	ısub> <mn< td=""><td>าl:15 nl:msub> < m</td></mn<>	าl: 15 nl:msub> < m
44	mathvariant="normal" abs/mml/miss/mml/mrows smml/mrows smml/mrs0.005s/mml/mnss/mml/mrows s/mml/m Structural properties and electrical behaviour in the polycrystalline lanthanum-deficiency La1â°'xâ-¡xMnO3 manganites. Journal of Magnetism and Magnetic Materials, 2009, 321, 1735-1738.	sub> <mn 2.3</mn 	nl:msub> < m 14
45	Crystal, spin glass, Griffiths phases and magneticaloric properties of the Sr1.5Nd0.5MnO4compound. Physica B: Condensed Matter, 2013, 414, 42-49.	2.7	14
46	Role of gallium ion on the conducting properties of La0.7(Ba, Sr)0.3Mn1â°'Ga O3 (x=0.0, 0.1 and 0.2) perovskite. Ceramics International, 2016, 42, 11256-11258.	4.8	14
47	Effect of the oxygen deficiency in physical properties of La0.7Ca0.25Sr0.05MnO3â~δ◡δ oxides (0⩽δ⩽0. Journal of Magnetism and Magnetic Materials, 2007, 316, e703-e706.	15). 2.3	13
48	Structural and Magnetic Studies of Ca2â^'x Sm x MnO Compounds (x=0â€"0.4). Journal of Superconductivity and Novel Magnetism, 2012, 25, 1169-1175.	1.8	13
49	Optimal Bandgap of Double Perovskite La-Substituted Bi ₂ FeCrO ₆ for Solar Cells: an <i>ab initio</i> GGA+ <i>U</i> Study. Chinese Physics Letters, 2017, 34, 016101.	3.3	13
50	Mg-substitution effect on microstructure, dielectric relaxation and conduction phenomenon of Fe based perovskite nanomaterials. Journal of Alloys and Compounds, 2021, 856, 157425.	5 . 5	12
51	Preparation of New Composite Magnetocaloric Compounds by Modifying the Annealing Temperature of La0.8Ca0.2 \hat{a}^{x} \hat{a}_{i} x MnO3 Perovskite. Journal of Superconductivity and Novel Magnetism, 2012, 25, 1151-1157.	1.8	11
52	Study of critical behavior of perovskite La0.8Ca0.2â^'xPbxFeO3 (x=0.0, 0.1 and 0.2) compounds. Journal of Alloys and Compounds, 2015, 638, 305-312.	5 . 5	11
53	Magnetic anisotropy and superparamagnetism in La 0.6 Ca 0.4 MnO 3 , La 0.6 Sr 0.4 MnO 3 and their mixed composition 0.875 La 0.6 Ca 0.4 MnO 3 /0.125 La 0.6 Sr 0.4 MnO 3 , agglomerated at different temperatures. Materials Chemistry and Physics, 2016, 182, 429-438.	4.0	11
54	Influence of Ga doping on the critical behavior of La0.7(Ba,Sr)0.3Mn1-Ga O3. Journal of Alloys and Compounds, 2016, 666, 425-431.	5. 5	11

#	Article	IF	CITATIONS
55	Influence of crystallite size reduction on the magnetic and magnetocaloric properties of La0.6Sr0.35Ca0.05CoO3 nanoparticles. Polyhedron, 2017, 121, 19-24.	2.2	11
56	Investigating the structural, morphological, dielectric and electric properties of the multiferroic (La0.8Ca0.2)0.9Bi0.1FeO3 material. Chemical Physics Letters, 2019, 731, 136588.	2.6	11
57	Effect of synthesis route on structural, morphological, Raman, dielectric, and electric properties of La0.8Ba0.1Bi0.1FeO3. Journal of Materials Science: Materials in Electronics, 2020, 31, 3197-3214.	2.2	11
58	Structural, morphological and excellent gas sensing properties of La1–2xBaxBixFeO3 (0.00Ââ‰ÂxÂâ‰Â0.20) nanoparticles. Journal of Alloys and Compounds, 2021, 883, 160856.	5.5	11
59	Investigation of temperature and frequency dependence of the dielectric properties of multiferroic (La _{0.8} Ca _{0.2}) _{0.4} Bi _{0.6} FeO ₃ nanoparticles for energy storage application. RSC Advances, 2022, 12, 6907-6917.	3.6	11
60	Effect of the annealing temperature on the structural and magnetic behaviors of 0.875La 0.6 Ca 0.4 MnO 3 /0.125La 0.6 Sr 0.4 MnO 3 composition. Journal of Magnetism and Magnetic Materials, 2016, 401, 56-62.	2.3	10
61	Critical behavior in the La 0.6 Ca 0.4 \hat{a} °x Sr x MnO 3 nano-particle compounds for x \hat{A} = \hat{A} 0, 0.05 and 0.4. Journal of Physics and Chemistry of Solids, 2017, 109, 50-63.	4.0	9
62	Prediction of magnetocaloric effect using a phenomenological model in (x) La0.6Ca0.4MnO3/($1\hat{A}\hat{a}^{\hat{A}}\hat{A}x$) La0.6Sr0.4MnO3 composites. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	9
63	High ethanol gas sensing property and modulation of magnetic and AC-conduction mechanism in 5% Mg-doped La0.8Ca0.1Pb0.1FeO3 compound. Journal of Materials Science: Materials in Electronics, 2019, 30, 12389-12398.	2.2	9
64	Structural, Morphological, Raman, and Mössbauer Studies on (La0.8Ca0.2)1â^'xBixFeO3 (x = 0.0, 0.1, and) Tj ETC	2q <u>0</u> 0 0 rg	BT /Overlock
65	Magnetic and Magnetocaloric Properties of Er2TiMnO7 Compound. Journal of Superconductivity and Novel Magnetism, 2013, 26, 3455-3458.	1.8	8
66	Magnetic and specific heat studies of the frustrated Er2Mn2O7 compound. Journal of Rare Earths, 2013, 31, 54-59.	4.8	8
67	Dielectric relaxation of the Ca2MnO4â^δsystem. Journal of Alloys and Compounds, 2013, 577, S483-S487.	5.5	8
68	Shine blue and blue-green photoluminescence in BaZrO3â~δ powders: An Ab-initio analysis of structural deformation. Chemical Physics Letters, 2015, 635, 228-233.	2.6	8
69	Physical properties and ethanol sensing of perovskite La0.8Pb0.2Fe1â°'Mg O3 compounds. Journal of Alloys and Compounds, 2015, 644, 304-307.	5.5	8
70	Structural, morphological, Raman, dielectric and electrical properties of La _{1â^2<i>x</i>} Ba _{<i>x</i>} Bi _{<i>x</i>} FeO ₃ (0.00 ≠ <i>x</i>)) Ђj∉ TQq0	& 0 rgBT /O
71	Synthesis and Magnetic Properties of New Pyrochlore Fe2Mn2O7 Compound. Journal of Superconductivity and Novel Magnetism, 2018, 31, 3803-3808.	1.8	7
72	Preparation and electron correlation effects of the perovskite La0.8Ca0.1Pb0.1Fe1â^'Co O3 (0†â‰â€ x†â‰â Solid State Ionics, 2018, 324, 157-162.	€_0,20). 2.7	7

#	Article	IF	CITATIONS
73	Structural, dielectric relaxation and magnetic features of the (La0.8Ca0.2)0.9Bi0.1Fe1â^'yTiyO3 (y = 0.0) Tj l	ETQq1	1 0.784314 rg <mark>e</mark> l
74	Magnetic, Electrical Properties and Spin-Glass Effect of Substitution of Ca for Pr in Ca2-xPrxMnO4 Compounds. The Open Surface Science Journal, 2009, 1, 54-58.	2.0	7
75	Shine red and yellow photoluminescence in GdAlO3â^î^î powders. Journal of Alloys and Compounds, 2015, 640, 501-503 on edetection based on nanostructured <mml:math< td=""><td>5.5</td><td>6</td></mml:math<>	5 . 5	6
76	mathvariant="normal">L <mml:msub><mml:mi mathvariant="normal">L</mml:mi><mml:msub><mml:mi mathvariant="normal">a</mml:mi><mml:mn>0.8</mml:mn></mml:msub><mml:mi mathvariant="normal">P</mml:mi><mml:msub><mml:mi< td=""><td>5.5</td><td>6</td></mml:mi<></mml:msub></mml:msub>	5.5	6
77	mathvariant="normal">b <mml:mn>0.1</mml:mn> <mml:mi (bi="" (la0.8ca0.2)1â^xbixfeo3="" 2020,="" 44,="" 9813-9821.<="" and="" behaviors="" bi="" ca)="" chemistry,="" compounds.="" double-doping="" effectvofithe="annealing" journal="" la,="" magnetic="" new="" of="" on="" structural="" substitution="" td="" temperature="" the=""><td>2.8</td><td>6</td></mml:mi>	2.8	6
78	Influence of Strain Compensation on Structural and Electrical Properties of InAlAs/InGaAs HEMT Structures Grown on InP. Japanese Journal of Applied Physics, 1999, 38, 1169-1173.	1.5	5
79	New Scanning Photoluminescence Technique for Quantitative Mapping the Surface Recombination Velocity in InP and Related Materials. Japanese Journal of Applied Physics, 1999, 38, 992-995.	1.5	5
80	Residual strain mapping in Ill–V materials by spectrally resolved scanning photoluminescence. Microelectronics Journal, 1999, 30, 651-657.	2.0	5
81	Structural and magnetic characterisation of the perovskite oxides La0.7Ca0.3â^'x NaxMnO3. Open Physics, 2009, 7, .	1.7	5
82	Morphological and electrical properties of La0.8Ca0.1Pb0.1FeO3 perovskite nanopowder for NH3 and CO gas detection. Journal of Electroceramics, 2020, 45, 39-46.	2.0	5
83	\tilde{MAq} ssbauer and magnetic studies of (La0.8Ca0.2)1-xBixFeO3 perovskites. Hyperfine Interactions, 2020, 241, 1.	0.5	5
84	Correlation between structural, magnetic and gas sensor properties of La0.885Pb0.005Ca0.11Fe1-xCoxO2.95(0.00â‰xâ‰0.15) compounds. Materials Research Bulletin, 2020, 130, 110922.	5.2	5
85	Room temperature scanning photoluminescence for mapping the lifetime and the doping density in epitaxial layers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 44, 125-129.	3.5	4
86	Dielectric spectroscopy of Ca2MnO4-δceramics using equivalent circuit analysis. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 631-635.	0.8	4
87	Electronic structure and magnetic properties of rare-earth perovskite gallates from first principles. Chinese Physics B, 2017, 26, 017101.	1.4	4
88	Investigation of Griffiths-like phase at low temperature in a new magnetocaloric compound, <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.svg"><mml:mrow><mml:mspace <br="" width="0.25em">/><mml:mi>A</mml:mi><mml:msub><mml:mi> /mml:mi><mml:mn>2</mml:mn></mml:mi></mml:msub><mml:mi> /mml:mi> /</mml:mi></mml:mspace></mml:mrow></mml:math>	4.0 ml:mi><	4 :mml:msub> <mi< td=""></mi<>
89	Journal of Physics and Chemistry of Solids, 2021, 148, 109605. Assessment of the critical behavior in the multiferroic Bi0.8Ba0.1Er0.1Fe0.96Cr0.02Co0.02O3 material, multi-substitution effect on magnetic and MA¶ssbauer properties. Journal of Magnetism and Magnetic Materials, 2021, 524, 167640.	2.3	4
90	Synthesis and physico-chemical characterization of Bi-doped Cobalt ferrite nanoparticles: cytotoxic effects against breast and prostate cancer cell lines. European Physical Journal Plus, 2022, 137, .	2.6	4

#	Article	IF	Citations
91	Effect of the oxygen deficiency on the physical properties of Ca2MnO4â^Î compounds. Journal of Alloys and Compounds, 2011, 509, 8965-8969.	5. 5	3
92	Effect of Fe-doping on Magnetocaloric Properties of AMn1â^'x Fe x O3 Compounds (0â%xâ%0.2). Journal of Superconductivity and Novel Magnetism, 2012, 25, 1495-1500.	1.8	3
93	Hardness in rare earth diboride systems: Ab initio full-potential study. Superlattices and Microstructures, 2017, 101, 575-583.	3.1	3
94	Ab initio LSDA+U Study of Optical Properties of RVO4 (R = Eu, Ho, Lu) Compounds. Materials Research, 2018, 21, .	1.3	3
95	Appearance of Griffiths-Like Phase in a New Pyrochlore Compound La2Mn2O7â^Î. Journal of Superconductivity and Novel Magnetism, 2019, 32, 2133-2139.	1.8	3
96	Preparation of double-doping <mml:math altimg="si25.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mi>L</mml:mi><mml:mi>a</mml:mi><mml:mi><mml:mi>F</mml:mi><thin 1267,="" 133543.<="" 2022,="" application.="" ethanol="" film="" for="" journal="" molecular="" of="" sensing="" structure,="" td=""><td>manami>∈</td><td>?<!--<b-->&nml:mi><!--</td--></td></thin></mml:mi></mml:mrow></mml:mrow></mml:math>	m an ami>∈	? <b &nml:mi> </td
97	Study of the physical properties of La _{2Áâ^ÂA^ÂxÁâ%Â0.075) compounds. EPJ A Physics, 2012, 59, 10601.}	Ap pli ed	2
98	Study of the Magneto-Resistivity and Dependence of Percolation in La0.75Ca0.1Sr0.15Mn1â^'x Ga x O3 Compounds. Journal of Superconductivity and Novel Magnetism, 2013, 26, 3099-3104.	1.8	2
99	Ground state properties of actinide dioxides: A self-consistent Hubbard U approach with spin orbit coupling. International Journal of Computational Materials Science and Engineering, 2017, 06, 1750006.	0.7	2
100	Influence of film-thickness on the ozone detection of perovskite La0.8Pb0.1Ca0.1Fe1â^'xCoxO3 based sensors. New Journal of Chemistry, 2021, 45, 11626-11635.	2.8	2
101	Effect of the substitution of calcium by potassium on the dielectric properties in La <inf>0.7</inf> Ca <inf>0.3−x</inf> K <inf>x</inf> MnO <inf>3</inf> compounds., 2008,,.		1
102	The Effect of Electron Doping on the Physical Properties of La1 - xCexMnO3 Manganites. Ferroelectrics, 2008, 371, 119-126.	0.6	1
103	Magnetic Refrigeration: Application to the Electron Doped Manganites. NATO Science for Peace and Security Series B: Physics and Biophysics, 2008, , 31-40.	0.3	1
104	Fermi Surfaces of Compensated and Uncompensated Metals: GGA+U+SO Comparative Ab Initio Study. Journal of Superconductivity and Novel Magnetism, 2016, 29, 2195-2201.	1.8	0
105	Temperature and Excitation Power-Density Dependences of the Photoluminescence of BaZrO2.9 Compound. Journal of Electronic Materials, 2017, 46, 709-712.	2.2	0
106	La0.8Pb0.1Ca0.1Fe1â~xCoxO3 thin films as ozone-sensitive layers. Journal of Materials Science: Materials in Electronics, 2021, 32, 23983-23998.	2.2	0