Gregory L Dignon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1445118/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphorylation of the <scp>FUS</scp> lowâ€complexity domain disrupts phase separation, aggregation, and toxicity. EMBO Journal, 2017, 36, 2951-2967.	7.8	544
2	Molecular interactions underlying liquidâ^'liquid phase separation of the FUS low-complexity domain. Nature Structural and Molecular Biology, 2019, 26, 637-648.	8.2	463
3	Sequence determinants of protein phase behavior from a coarse-grained model. PLoS Computational Biology, 2018, 14, e1005941.	3.2	427
4	Biomolecular Phase Separation: From Molecular Driving Forces to Macroscopic Properties. Annual Review of Physical Chemistry, 2020, 71, 53-75.	10.8	368
5	Mechanistic View of hnRNPA2 Low-Complexity Domain Structure, Interactions, and Phase Separation Altered by Mutation and Arginine Methylation. Molecular Cell, 2018, 69, 465-479.e7.	9.7	312
6	Relation between single-molecule properties and phase behavior of intrinsically disordered proteins. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9929-9934.	7.1	283
7	TDP-43 α-helical structure tunes liquid–liquid phase separation and function. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5883-5894.	7.1	258
8	Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11421-11431.	7.1	202
9	Temperature-Controlled Liquid–Liquid Phase Separation of Disordered Proteins. ACS Central Science, 2019, 5, 821-830.	11.3	199
10	Molecular Details of Protein Condensates Probed by Microsecond Long Atomistic Simulations. Journal of Physical Chemistry B, 2020, 124, 11671-11679.	2.6	127
11	Simulation methods for liquid–liquid phase separation of disordered proteins. Current Opinion in Chemical Engineering, 2019, 23, 92-98.	7.8	89
12	Sequence dependent phase separation of protein-polynucleotide mixtures elucidated using molecular simulations. Nucleic Acids Research, 2020, 48, 12593-12603.	14.5	83
13	Hydropathy Patterning Complements Charge Patterning to Describe Conformational Preferences of Disordered Proteins. Journal of Physical Chemistry Letters, 2020, 11, 3408-3415.	4.6	70
14	A predictive coarse-grained model for position-specific effects of post-translational modifications. Biophysical Journal, 2021, 120, 1187-1197.	0.5	56
15	The Protein Folding Problem: The Role of Theory. Journal of Molecular Biology, 2021, 433, 167126.	4.2	52
16	Tyrosine phosphorylation regulates hnRNPA2 granule protein partitioning and reduces neurodegeneration. EMBO Journal, 2021, 40, e105001.	7.8	44
17	Interplay Between Membrane Composition and Structural Stability of Membrane-Bound hIAPP. Journal of Physical Chemistry B, 2017, 121, 8661-8668.	2.6	25
18	Accelerating Protein Folding Molecular Dynamics Using Inter-Residue Distances from Machine Learning Servers, Journal of Chemical Theory and Computation, 2022, 18, 1929-1935	5.3	8

#	Article	IF	CITATIONS
19	A High-Throughput Approach to Phase Separation of Disordered Proteins. Biophysical Journal, 2019, 116, 350a.	0.5	1