Yaakov R Tischler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1444953/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photoinduced Reversible Structural Transformations in Free-Standing CH ₃ NH ₃ PbI ₃ Perovskite Films. Journal of Physical Chemistry Letters, 2015, 6, 2332-2338.	4.6	190
2	Highly efficient resonant coupling of optical excitations in hybrid organic/inorganic semiconductor nanostructures. Nature Nanotechnology, 2007, 2, 555-559.	31.5	165
3	Third-Order Optical Nonlinearities in Organometallic Methylammonium Lead Iodide Perovskite Thin Films. ACS Photonics, 2016, 3, 361-370.	6.6	140
4	Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film. Optics Letters, 2006, 31, 2045.	3.3	136
5	Solid state cavity QED: Strong coupling in organic thin films. Organic Electronics, 2007, 8, 94-113.	2.6	104
6	Layer-by-Layer J-Aggregate Thin Films with a Peak Absorption Constant of 106 cm–1. Advanced Materials, 2005, 17, 1881-1886.	21.0	99
7	Quantum Efficiency and Bandgap Analysis for Combinatorial Photovoltaics: Sorting Activity of Cu–O Compounds in All-Oxide Device Libraries. ACS Combinatorial Science, 2014, 16, 53-65.	3.8	83
8	Synthesis of J-Aggregating Dibenz[<i>a</i> , <i>j</i>]anthracene-Based Macrocycles. Journal of the American Chemical Society, 2009, 131, 5659-5666.	13.7	79
9	Electrostatic Formation of Quantum Dot/J-aggregate FRET Pairs in Solution. Journal of Physical Chemistry C, 2009, 113, 9986-9992.	3.1	76
10	Highly Efficient Blue Electroluminescence from Poly(phenylene ethynylene) via Energy Transfer from a Hole-Transport Matrix. Advanced Materials, 2005, 17, 1981-1985.	21.0	70
11	Strong Light-Matter Coupling and Hybridization of Molecular Vibrations in a Low-Loss Infrared Microcavity. Journal of Physical Chemistry Letters, 2016, 7, 2002-2008.	4.6	69
12	New aqueous energy storage devices comprising graphite cathodes, MXene anodes and concentrated sulfuric acid solutions. Energy Storage Materials, 2020, 32, 1-10.	18.0	32
13	Room Temperature Fabrication of Dielectric Bragg Reflectors Composed of a CaF ₂ /ZnS Multilayered Coating. ACS Applied Materials & Interfaces, 2015, 7, 474-481.	8.0	30
14	Strong lightâ€matter coupling between a molecular vibrational mode in a PMMA film and a lowâ€loss midâ€lR microcavity. Annalen Der Physik, 2016, 528, 313-320.	2.4	29
15	New Method to Study the Vibrational Modes of Biomolecules in the Terahertz Range Based on a Single-Stage Raman Spectrometer. ACS Omega, 2017, 2, 1232-1240.	3.5	24
16	Vibrational Strong Light–Matter Coupling Using a Wavelength-Tunable Mid-infrared Open Microcavity. Journal of Physical Chemistry C, 2017, 121, 18845-18853.	3.1	24
17	Utilizing Pulsed Laser Deposition Lateral Inhomogeneity as a Tool in Combinatorial Material Science. ACS Combinatorial Science, 2015, 17, 209-216.	3.8	22
18	Characterization of Crystal Chirality in Amino Acids Using Low-Frequency Raman Spectroscopy. Journal of Physical Chemistry A, 2017, 121, 7882-7888.	2.5	21

YAAKOV R TISCHLER

#	Article	IF	CITATIONS
19	Improving Raman spectra of pure silicon using super-resolved method. Journal of Optics (United) Tj ETQq1 1 0.7	84314 rgB 2.2	T /Overlock
20	Higher Ultrasonic Frequency Liquid Phase Exfoliation Leads to Larger and Monolayer to Few-Layer Flakes of 2D Layered Materials. Langmuir, 2021, 37, 4504-4514.	3.5	21
21	Reduced lasing threshold from organic dye microcavities. Physical Review B, 2014, 90, .	3.2	20
22	Millimeter-Tall Carpets of Vertically Aligned Crystalline Carbon Nanotubes Synthesized on Copper Substrates for Electrical Applications. Journal of Physical Chemistry C, 2014, 118, 19345-19355.	3.1	20
23	Structural Characterization and Room Temperature Low-Frequency Raman Scattering from MAPbI3 Halide Perovskite Films Rigidized by Cesium Incorporation. ACS Applied Energy Materials, 2018, 1, 6707-6713.	5.1	20
24	Replacing a Century Old Technique – Modern Spectroscopy Can Supplant Gram Staining. Scientific Reports, 2017, 7, 3810.	3.3	18
25	Sulfur Treatment Passivates Bulk Defects in Sb ₂ Se ₃ Photocathodes for Water Splitting. Advanced Functional Materials, 2022, 32, .	14.9	18
26	Chiral Purity of Crystals Using Lowâ€Frequency Raman Spectroscopy. ChemPhysChem, 2018, 19, 3116-3121.	2.1	15
27	Solid-State Rhodamine 6G Microcavity Laser. IEEE Photonics Technology Letters, 2016, 28, 1823-1826.	2.5	13
28	Spectroscopic Method for Fast and Accurate Group A Streptococcus Bacteria Detection. Analytical Chemistry, 2016, 88, 2164-2169.	6.5	13
29	Efficient Förster energy transfer from phosphorescent organic molecules to J-aggregate thin films. Chemical Physics Letters, 2010, 485, 243-246.	2.6	12
30	Super-Resolved Raman Spectra of Toluene and Toluene–Chlorobenzene Mixture. Spectroscopy Letters, 2015, 48, 431-435.	1.0	12
31	Raman and Photoluminescence Properties of Red and Yellow Rubrene Crystals. Journal of Physical Chemistry C, 2014, 118, 14528-14533.	3.1	11
32	Microcavity Laser Based on a Single Molecule Thick High Gain Layer. ACS Nano, 2017, 11, 4514-4520.	14.6	11
33	The effect of excitation wavelength and metallic nanostructure on SERS spectra of C ₆₀ . Journal of Raman Spectroscopy, 2017, 48, 829-836.	2.5	9
34	Characterization of peptides self-assembly by low frequency Raman spectroscopy. RSC Advances, 2018, 8, 16161-16170.	3.6	9
35	Synthesis and characterization of a J-aggregating TDBC derivative in solution and in Langmuir–Blodgett films. Journal of Luminescence, 2015, 158, 376-383.	3.1	8
36	Synthesis of an amphiphilic rhodamine derivative and characterization of its solution and thin film properties. Thin Solid Films, 2014, 564, 86-91.	1.8	6

YAAKOV R TISCHLER

#	Article	IF	CITATIONS
37	A simplified method for generating periodic nanostructures by interference lithography without the use of an anti-reflection coating. Applied Physics Letters, 2015, 107, .	3.3	6
38	Deposition and Characterization of Roughened Surfaces. Langmuir, 2017, 33, 1810-1815.	3.5	5
39	Polarization Dependence of Low-Frequency Vibrations from Multiple Faces in an Organic Single Crystal. Crystals, 2019, 9, 425.	2.2	5
40	CVD-Assisted Synthesis of 2D Layered MoSe ₂ on Mo Foil and Low Frequency Raman Scattering of Its Exfoliated Few-Layer Nanosheets on CaF ₂ Substrates. ACS Omega, 2022, 7, 4121-4134.	3.5	5
41	Multiprobe NSOM fluorescence. Nanophotonics, 2014, 3, 117-124.	6.0	4
42	Microcavity enhancement of lowâ€frequency Raman scattering from a CsPbI 3 thin film. Journal of Raman Spectroscopy, 2019, 50, 1672-1678.	2.5	4
43	Microcavity Enhanced Raman Spectroscopy of Fullerene C60 Bucky Balls. Sensors, 2020, 20, 1470.	3.8	4
44	Basic model of absorption depth and injection levels in silicon under intermediate illumination levels. Optics Communications, 2013, 291, 1-6.	2.1	3
45	Combining polarized low-frequency Raman with XRD to identify directional structural motifs in a pyrolysis precursor. Chemical Communications, 2021, 57, 7015-7018.	4.1	3
46	Identification of Enantiomers Using Low-Frequency Raman Spectroscopy. Analytical Chemistry, 2022, 94, 3188-3193.	6.5	3
47	Influence of gain material concentration on an organic DFB laser. Optical Materials Express, 2016, 6, 2715.	3.0	2
48	Direct Formation of Carbocyanine J-Aggregates in Organic Solvent. Journal of Physical Chemistry C, 2019, 123, 19087-19093.	3.1	2
49	Raman scattering obtained from laser excitation of MAPbI3 single crystal. Applied Materials Today, 2020, 19, 100571.	4.3	2
50	Vibrational Strong Light–Matter Coupling in an Open Microcavity Based on Reflective Germanium Coatings. Journal of Physical Chemistry A, 2022, 126, 1282-1288.	2.5	2
51	Resonant Cavity Colloidal Quantum Dot LEDs. , 2011, , .		1
52	Fabrication of dielectric Bragg reflectors composed of CaF2 and ZnS for delicate lasing materials. , 2015, , .		1
53	Low Cost Method for Generating Periodic Nanostructures by Interference Lithography Without the Use of an Anti-Reflection Coating. MRS Advances, 2017, 2, 927-932.	0.9	0