Adrian Slater

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1444849/publications.pdf

Version: 2024-02-01

394421 395702 1,116 44 19 citations h-index papers

g-index 46 46 46 878 all docs docs citations times ranked citing authors

33

#	Article	IF	CITATIONS
1	Challenges in Medicinal and Aromatic Plants DNA Barcodingâ€"Lessons from the Lamiaceae. Plants, 2022, 11, 137.	3.5	18
2	Array-based dynamic allele specific hybridization (Array-DASH): Optimization-free microarray processing for multiple simultaneous genomic assays. Analytical Biochemistry, 2021, 626, 114124.	2.4	1
3	Applied Barcoding: The Practicalities of DNA Testing for Herbals. Plants, 2020, 9, 1150.	3.5	15
4	Molecular Verification of the UK National Collection of Cultivated Liriope and Ophiopogon Plants. Plants, 2020, 9, 558.	3.5	2
5	Health care professionals' personal and professional views of herbal medicines in the United Kingdom. Phytotherapy Research, 2019, 33, 2360-2368.	5.8	10
6	DNA Authentication of St John's Wort (Hypericum perforatum L.) Commercial Products Targeting the ITS Region. Genes, 2019, 10, 286.	2.4	13
7	Sequence-Specific Detection of Aristolochia DNA – A Simple Test for Contamination of Herbal Products. Frontiers in Plant Science, 2018, 9, 1828.	3.6	13
8	Product authenticity versus globalisationâ€"The Tulsi case. PLoS ONE, 2018, 13, e0207763.	2.5	29
9	The Use of Traditional Herbal Medicines Amongst South Asian Diasporic Communities in the UK. Phytotherapy Research, 2017, 31, 1786-1794.	5.8	19
10	Character-based DNA barcoding for authentication and conservation of IUCN Red listed threatened species of genus Decalepis (Apocynaceae). Scientific Reports, 2017, 7, 14910.	3.3	25
11	DNA Barcoding for Industrial Quality Assurance. Planta Medica, 2017, 83, 1117-1129.	1.3	57
12	Genus-Specific Real-Time PCR and HRM Assays to Distinguish Liriope from Ophiopogon Samples. Plants, 2017, 6, 53.	3.5	4
13	Changes in the Chlorophyll Content and Cytokinin Levels in the Top Three Leaves of New Plant Type Rice During Grain Filling. Journal of Plant Growth Regulation, 2014, 33, 66-76.	5.1	12
14	The application of a DNA-based identification technique to over-the-counter herbal medicines. Fìtoterapìâ, 2013, 87, 27-30.	2.2	22
15	PlantID – DNA-based identification of multiple medicinal plants in complex mixtures. Chinese Medicine, 2012, 7, 18.	4.0	10
16	Green fluorescent protein as a visual selection marker for coffee transformation. Biologia (Poland), 2010, 65, 639-646.	1.5	9
17	Molecular Identification of <i>Hypericum perforatum < li>by PCR Amplification of the ITS and 5.8S rDNA Region. Planta Medica, 2009, 75, 864-869.</i>	1.3	28
18	Life's Green Power Plant Eating the Sun: How Plants Power the Planet . Oliver Morton . HarperCollins, 2008. 460 pp, illus. \$28.95 (ISBN 9780007163649 cloth) BioScience, 2009, 59, 805-806.	4.9	0

#	Article	IF	CITATIONS
19	Efficient somatic embryogenesis in sugar beet (Beta vulgaris L.) breeding lines. Plant Cell, Tissue and Organ Culture, 2008, 93, 209-221.	2.3	21
20	Adventitious root induction in Ophiorrhiza prostrata: a tool for the production of camptothecin (an) Tj ETQq0 0 0	rgBT /Over	lock 10 Tf 5
21	A TaqMan real-time PCR system for the identification and quantification of bovine DNA in meats, milks and cheeses. Food Control, 2007, 18, 1149-1158.	5.5	97
22	Control of shoot necrosis and plant death during micro-propagation of banana and plantains (Musa) Tj ETQq0 0 0	rgBT /Over	rlock 10 Tf :
23	Efficient induction of apospory and apogamy in vitro in silver fern (Pityrogramma calomelanos L.). Plant Cell Reports, 2006, 25, 1300-1307.	5.6	21
24	Efficient procedures for callus induction and adventitious shoot organogenesis in sugar beet (Beta) Tj ETQq0 0 0 r	gBT /Overl	95k 10 Tf 50
25	Arabidopsis CDC2a and Cyclin Gene Promoter::gusA Constructs as Markers of Cell Growth and Division in Heterologous Plants., 2003,, 261-262.		O
26	Assessment of polysomaty, embryo formation and regeneration in liquid media for various species of diploid annual Medicago. Plant Science, 2001, 160, 621-627.	3.6	30
27	Thidiazuron-induced organogenesis and somatic embryogenesis in sugar beet (Beta vulgaris L.). In Vitro Cellular and Developmental Biology - Plant, 2001, 37, 305-310.	2.1	49
28	Characterization of a Mak subgroup Cdc2â€like protein kinase from sugar beet (Beta vulgaris L.). Journal of Experimental Botany, 2000, 51, 2119-2124.	4.8	3
29	RS2: a sugar beet gene related to the latex allergen Hev b 5 family. Journal of Experimental Botany, 2000, 51, 2125-2126.	4.8	15
30	Taking a leaf from the plant cell cyclists. Trends in Cell Biology, 1998, 8, 505-506.	7.9	0
31	The plant cell cycle in context. Molecular Biotechnology, 1998, 10, 123-153.	2.4	26
32	Induction of cell division-related genes in quiescent (G0) sugar beet cells. Physiologia Plantarum, 1998, 102, 61-70.	5.2	5
33	The entry of sugar beet cells into the GO state involves extensive re-programming of gene expression mechanisms via transcriptional and translational controls. Plant Science, 1998, 136, 79-91.	3.6	1
34	Polyamine metabolism and gene regulation during the transition of autonomous sugar beet cells in suspension culture from quiescence to division. Physiologia Plantarum, 1996, 98, 439-446.	5.2	17
35	Polyamine metabolism and gene regulation during the transition of autonomous sugar beet cells in suspension culture from quiescence to division. Physiologia Plantarum, 1996, 98, 439-446.	5.2	13
36	Extraction of RNA from Plants. , 1988, 4, 437-446.		2

ADRIAN SLATER

#	Article	IF	CITATION
37	Hybrid-Release Translation. , 1988, 4, 27-38.		1
38	Rapid appearance of an mRNA correlated with ethylene synthesis encoding a protein ofmolecular weight 35000. Planta, 1986, 168, 94-100.	3.2	115
39	Isolation and characterisation of cDNA clones for tomato polygalacturonase and other ripening-related proteins. Plant Molecular Biology, 1985, 5, 137-147.	3.9	139
40	The Pattern of Protein Synthesis Induced by Heat Shock of HeLa Cells. FEBS Journal, 1981, 117, 341-346.	0.2	88
41	Polypeptides encoded by polyadenylated and non-polyadenylated messenger RNAs from normal and heat shocked HeLa cells. Nucleic Acids Research, 1981, 9, 5203-5214.	14.5	20
42	Non-polyadenylated mRNAs from eukaryotes. FEBS Letters, 1980, 116, 1-7.	2.8	37
43	Ribonucleoproteins and Heterogeneous Nuclear Ribonucleic Acid Metabolism in Isolated HeLa-Cell Nuclei. Biochemical Society Transactions, 1977, 5, 632-633.	3.4	O
44	Actin in the adrenal medulla. FEBS Letters, 1975, 56, 327-331.	2.8	32