Clemens MÃ¹/4ller

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/1444378/publications.pdf
Version: 2024-02-01

<i>In situ</i> Tuning of the Electric-Dipole Strength of a Double-Dot Charge Qubit: Charge-Noise
Protection and Ultrastrong Coupling. Physical Review X, 2022, 12,

Ultrahigh vacuum packaging and surface cleaning for quantum devices. Review of Scientific Instruments, 2021, 92, 025121.

3 Effects of surface treatments on flux tunable transmon qubits. Npj Quantum Information, 2021, 7, .
$6.7 \quad 9$

Operating a passive on-chip superconducting circulator: Device control and quasiparticle effects.
Physical Review Research, 2021, 3, .

Quantum Rifling: Protecting a Qubit from Measurement Back Action. Physical Review Letters, 2020, 124,
070401.

6 Dissipative Rabi model in the dispersive regime. Physical Review Research, 2020, 2, .
3.6
$7 \quad$ Aharonov-Bohm interference as a probe of Majorana fermions. Physical Review Research, 2020, 2, .
3.6

Towards understanding two-level-systems in amorphous solids: insights from quantum circuits.
$8 \quad$ Towards understanding two-level-systems in amorp
20.1

239
$9 \quad$ Virtual-photon-mediated spin-qubitâ $\epsilon^{\prime \prime}$ transmon coupling. Nature Communications, 2019, 10, 5037.
12.8

39

10 Correlating Decoherence in Transmon Qubits: Low Frequency Noise by Single Fluctuators. Physical
Review Letters, 2019, 123, 190502.

11 Doubly nonlinear superconducting qubit. Physical Review A, 2019, 100, .
2.5

23

12 Microwave Photon-Mediated Interactions between Semiconductor Qubits. Physical Review X, 2018, 8, .
8.9

42

13 Nonreciprocity Realized with Quantum Nonlinearity. Physical Review Letters, 2018, 121, 123601.
7.8

71

Passive On-Chip Superconducting Circulator Using a Ring of Tunnel Junctions. Physical Review Letters, 2018, 120, 213602.

Deriving Lindblad master equations with Keldysh diagrams: Correlated gain and loss in higher order perturbation theory. Physical Review A, 2017, 95, .
2.5

32
Observation of directly interacting coherent two-level systems in an amorphous material. Nature
Communications, 2015, 6,6182 .

Communications, 2015, 6, 6182.

20 Detection and manipulation of Majorana fermions in circuit QED. Physical Review B, 2013, 88, .
3.2

28

Pure dephasing in flux qubits due to flux noise with spectral density scaling as1/ffı. Physical Review B, 2012, 85, .
3.2

33

Dual-probe decoherence microscopy: probing pockets of coherence in a decohering environment. New Journal of Physics, 2012, 14, 023013.
2.9

12

T1-echo sequence: Protecting the state of a qubit in the presence of coherent interaction. Physical
2.5

Review A, 2012, 86, .

24 Geometric quantum gates with superconducting qubits. Physical Review B, 2011, 83, .
3.2

26

25	Entangling microscopic defects via a macroscopic quantum shuttle. New Journal of Physics, 2011, 13, 063015.	2.9
26	Rabi spectroscopy of a qubit-fluctuator system. Physical Review B, 2010, 81,.	3.2

Quantitative evaluation of defect-models in superconducting phase qubits. Applied Physics Letters,
$2010,97,$.

Measuring the Temperature Dependence of Individual Two-Level Systems by Direct Coherent Control. Physical Review Letters, 2010, 105, 230504.

29 Multiphoton spectroscopy of a hybrid quantum system. Physical Review B, 2010, 82, .
3.2

28

Relaxation of Josephson qubits due to strong coupling to two-level systems. Physical Review B, 2009, 80, .

21

