
Pratibha Biswal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1444032/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Entropy generation vs energy efficiency for natural convection based energy flow in enclosures and various applications: A review. Renewable and Sustainable Energy Reviews, 2017, 80, 1412-1457.	16.4	77
2	Sensitivity of heatfunction boundary conditions on invariance of Bejan's heatlines for natural convection in enclosures with various wall heatings. International Journal of Heat and Mass Transfer, 2015, 89, 1342-1368.	4.8	32
3	Analysis of thermal management during natural convection within porous tilted square cavities via heatline and entropy generation. International Journal of Mechanical Sciences, 2016, 115-116, 596-615.	6.7	30
4	Bejan's heatlines and numerical visualization of convective heat flow in differentially heated enclosures with concave/convex side walls. Energy, 2014, 64, 69-94.	8.8	27
5	Entropy generation based approach on natural convection in enclosures with concave/convex side walls. International Journal of Heat and Mass Transfer, 2015, 82, 213-235.	4.8	27
6	Heatlines: Modeling, visualization, mixing and thermal management. Progress in Energy and Combustion Science, 2018, 64, 157-218.	31.2	25
7	Role of the importance of †Forchheimer term' for visualization of natural convection in porous enclosures of various shapes. International Journal of Heat and Mass Transfer, 2016, 97, 1044-1068.	4.8	24
8	Analysis of Convective Heat Flow Visualization within Porous Right Angled Triangular Enclosures with a Concave/Convex Hypotenuse. Numerical Heat Transfer; Part A: Applications, 2013, 64, 621-647.	2.1	21
9	Heat flow visualization during mixed convection within entrapped porous triangular cavities with moving horizontal walls via heatline analysis. International Journal of Heat and Mass Transfer, 2017, 108, 468-489.	4.8	19
10	Analysis of entropy generation during natural convection within entrapped porous triangular cavities during hot or cold fluid disposal. Numerical Heat Transfer; Part A: Applications, 2016, 69, 931-956.	2.1	16
11	A computational study of mist assisted film cooling. International Communications in Heat and Mass Transfer, 2018, 95, 33-41.	5.6	16
12	Role of various concave/convex walls exposed to solar heating on entropy generation during natural convection within porous right angled triangular enclosures. Solar Energy, 2016, 137, 101-121.	6.1	13
13	Role of differential vs Rayleigh-Bénard heating at curved walls for efficient processing via entropy generation approach. International Journal of Heat and Mass Transfer, 2018, 124, 390-413.	4.8	10
14	Heatlines visualization of convective heat flow during differential heating of porous enclosures with concave/convex side walls. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 1506-1538.	2.8	10
15	Analysis of entropy production vs . energy efficiencies during natural convection in porous trapezoidal cavities exposed to various thermal ambience. Journal of the Taiwan Institute of Chemical Engineers, 2016, 65, 118-133.	5.3	8
16	Role of thermal and flow characteristics on entropy generation during natural convection in porous enclosures with curved walls subjected to Rayleigh-Bénard heating. International Journal of Heat and Mass Transfer, 2017, 109, 1261-1280.	4.8	8
17	Analysis of entropy generation during natural convection in porous enclosures with curved surfaces. Numerical Heat Transfer; Part A: Applications, 2017, 71, 17-43.	2.1	6
18	Investigation of natural convection via heatlines for Rayleigh–Bénard heating in porous enclosures with a curved top and bottom walls. Numerical Heat Transfer; Part A: Applications, 2017, 72, 291-312.	2.1	6

Pratibha Biswal

#	Article	IF	CITATIONS
19	On the finite element based evaluation of Nusselt numbers for curvedÂwalls. International Communications in Heat and Mass Transfer, 2016, 77, 123-131.	5.6	4
20	Analysis of heatline based visualization for thermal management during mixed convection of hot/cold fluids within entrapped triangular cavities. Journal of the Taiwan Institute of Chemical Engineers, 2017, 77, 122-141.	5.3	4
21	Role of heatlines on thermal management during Rayleigh-Bénard heating within enclosures with concave/convex horizontal walls. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 2070-2104.	2.8	3
22	Role of various moving walls on entropy generation during mixed convection within entrapped porous triangular cavities. Numerical Heat Transfer; Part A: Applications, 2017, 71, 423-447.	2.1	2
23	Analysis of differential <i>versus</i> Rayleigh–Bénard heating via heat flow visualization for thermal convection due to heating at enclosures with concave/convex walls. Numerical Heat Transfer; Part A: Applications, 2018, 73, 823-848.	2.1	2
24	Analysis of exergy loss vs heat transfer rate for Rayleigh–Bénard convection of various fluids in enclosures with curved walls. Numerical Heat Transfer; Part A: Applications, 2017, 72, 821-843.	2.1	1
25	Investigation on Thermal Efficiency via Entropy Generation Analysis Within Cavities with Curved Walls Subjected to Differential/Rayleigh-Benard Heating. Materials Today: Proceedings, 2018, 5, 23107-23118.	1.8	1
26	Analysis of flow and thermal maps during natural convection within porous triangular configurations subjected to linear heating at inclined walls. Numerical Heat Transfer; Part A: Applications, 2020, 78, 479-503.	2.1	1
27	Experimental studies on space heating using phase change material. Energy Storage, 2021, 3, e209.	4.3	1
28	Analysis of process efficiency: Role of flow and thermal characteristics on entropy production and heat transfer rates for thermal convection in porous beds confined within triangular configurations with hot slanted walls. Numerical Heat Transfer; Part A: Applications, 2022, 81, 160-186.	2.1	1
29	Computational Study of Film Cooling With Mist and Air for a Flat Plate. , 2017, , .		0
30	Analysis of Heatfunction Boundary Conditions on Invariance of Heat Flow in Square Enclosures with Various Thermal Boundary Conditions. , 2014, , .		0
31	Enhancement of Cooling Effectiveness with Mist Assisted Film Cooling. , 0, , .		0