
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1443935/publications.pdf Version: 2024-02-01

KLAUS EDÃ1/4

#	Article	IF	CITATIONS
1	Neural adhesion molecule L1 as a member of the immunoglobulin superfamily with binding domains similar to fibronectin. Nature, 1988, 334, 701-703.	27.8	645
2	A viral inhibitor of peptide transporters for antigen presentation. Nature, 1995, 375, 415-418.	27.8	596
3	Immune clearance of highly pathogenic SIV infection. Nature, 2013, 502, 100-104.	27.8	548
4	The ER-Luminal Domain of the HCMV Glycoprotein US6 Inhibits Peptide Translocation by TAP. Immunity, 1997, 6, 613-621.	14.3	441
5	Cytomegalovirus Vectors Violate CD8 ⁺ T Cell Epitope Recognition Paradigms. Science, 2013, 340, 1237874.	12.6	397
6	Vpu Directs the Degradation of the Human Immunodeficiency Virus Restriction Factor BST-2/Tetherin via a βTrCP-Dependent Mechanism. Journal of Virology, 2009, 83, 7931-7947.	3.4	310
7	Downregulation of Major Histocompatibility Complex Class I by Human Ubiquitin Ligases Related to Viral Immune Evasion Proteins. Journal of Virology, 2004, 78, 1109-1120.	3.4	275
8	IRF-3, IRF-5, and IRF-7 Coordinately Regulate the Type I IFN Response in Myeloid Dendritic Cells Downstream of MAVS Signaling. PLoS Pathogens, 2013, 9, e1003118.	4.7	270
9	Antigen presentation by MHC class I and its regulation by interferon γ. Current Opinion in Immunology, 1999, 11, 76-81.	5.5	262
10	Broadly targeted CD8 ⁺ T cell responses restricted by major histocompatibility complex E. Science, 2016, 351, 714-720.	12.6	260
11	Evasion of CD8 ⁺ T Cells Is Critical for Superinfection by Cytomegalovirus. Science, 2010, 328, 102-106.	12.6	238
12	DNA Microarrays of the Complex Human Cytomegalovirus Genome: Profiling Kinetic Class with Drug Sensitivity of Viral Gene Expression. Journal of Virology, 1999, 73, 5757-5766.	3.4	235
13	Molecular Mechanism of BST2/Tetherin Downregulation by K5/MIR2 of Kaposi's Sarcoma-Associated Herpesvirus. Journal of Virology, 2009, 83, 9672-9681.	3.4	234
14	Prevention of tuberculosis in rhesus macaques by a cytomegalovirus-based vaccine. Nature Medicine, 2018, 24, 130-143.	30.7	225
15	West Nile Virus Infection Activates the Unfolded Protein Response, Leading to CHOP Induction and Apoptosis. Journal of Virology, 2007, 81, 10849-10860.	3.4	197
16	Quantitative Membrane Proteomics Reveals New Cellular Targets of Viral Immune Modulators. PLoS Pathogens, 2006, 2, e107.	4.7	194
17	In Vivo Assembly of the Proteasomal Complexes, Implications for Antigen Processing. Journal of Biological Chemistry, 1995, 270, 27687-27694.	3.4	176
18	TEB4 is a C4HC3 RING finger-containing ubiquitin ligase of the endoplasmic reticulum. Biochemical Journal, 2005, 388, 647-655.	3.7	147

#	Article	IF	CITATIONS
19	Interleukinâ€10â€induced MARCH1 mediates intracellular sequestration of MHC class II in monocytes. European Journal of Immunology, 2008, 38, 1225-1230.	2.9	135
20	Kaposi's Sarcoma-Associated Herpesvirus-Induced Upregulation of the c- kit Proto-Oncogene, as Identified by Gene Expression Profiling, Is Essential for the Transformation of Endothelial Cells. Journal of Virology, 2002, 76, 8383-8399.	3.4	126
21	Human Cytomegalovirus Inhibits Tapasin-Dependent Peptide Loading and Optimization of the MHC Class I Peptide Cargo for Immune Evasion. Immunity, 2004, 20, 71-85.	14.3	122
22	Proteomic Analysis of Mammalian Oligosaccharyltransferase Reveals Multiple Subcomplexes that Contain Sec61, TRAP, and Two Potential New Subunits. Biochemistry, 2005, 44, 5982-5992.	2.5	122
23	The PHD/LAP-Domain Protein M153R of Myxomavirus Is a Ubiquitin Ligase That Induces the Rapid Internalization and Lysosomal Destruction of CD4. Journal of Virology, 2003, 77, 1427-1440.	3.4	120
24	Monkeypox virus evades antiviral CD4 ⁺ and CD8 ⁺ T cell responses by suppressing cognate T cell activation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14567-14572.	7.1	116
25	Molecular Basis of Oligoubiquitin-Dependent Internalization of Membrane Proteins in Mammalian Cells. Traffic, 2006, 7, 282-297.	2.7	113
26	Novel Cellular Genes Essential for Transformation of Endothelial Cells by Kaposi's Sarcoma–Associated Herpesvirus. Cancer Research, 2005, 65, 5084-5095.	0.9	110
27	MARCH ubiquitin ligases alter the itinerary of clathrin-independent cargo from recycling to degradation. Molecular Biology of the Cell, 2011, 22, 3218-3230.	2.1	108
28	The Great Escape: Viral Strategies to Counter BST-2/Tetherin. PLoS Pathogens, 2010, 6, e1000913.	4.7	104
29	A comparison of viral immune escape strategies targeting the MHC class I assembly pathway. Immunological Reviews, 1999, 168, 157-166.	6.0	101
30	Viral Modulators of Cullin RING Ubiquitin Ligases: Culling the Host Defense. Science Signaling, 2006, 2006, pe21-pe21.	3.6	94
31	Kaposi sarcoma-associated herpesvirus (KSHV) induces heme oxygenase-1 expression and activity in KSHV-infected endothelial cells. Blood, 2004, 103, 3465-3473.	1.4	92
32	Rhesus CMV: an emerging animal model for human CMV. Medical Microbiology and Immunology, 2008, 197, 109-115.	4.8	92
33	A role for MHC class I down-regulation in NK cell lysis of herpes virus-infected cells. European Journal of Immunology, 2000, 30, 509-515.	2.9	89
34	Kaposi sarcoma herpesvirus K5 removes CD31/PECAM from endothelial cells. Blood, 2006, 108, 1932-1940.	1.4	86
35	A live-attenuated RhCMV/SIV vaccine shows long-term efficacy against heterologous SIV challenge. Science Translational Medicine, 2019, 11, .	12.4	80
36	Ebola Virion Attachment and Entry into Human Macrophages Profoundly Effects Early Cellular Gene Expression. PLoS Neglected Tropical Diseases, 2011, 5, e1359.	3.0	79

#	Article	IF	CITATIONS
37	Characterization of the Proteasome Regulator PA28. Journal of Biological Chemistry, 1996, 271, 18237-18242.	3.4	78
38	The Src Family Kinase c-Yes Is Required for Maturation of West Nile Virus Particles. Journal of Virology, 2005, 79, 11943-11951.	3.4	78
39	High-Content Assay to Identify Inhibitors of Dengue Virus Infection. Assay and Drug Development Technologies, 2010, 8, 553-570.	1.2	78
40	A point mutation in the human transporter associated with antigen processing (TAP2) alters the peptide transport specificity. European Journal of Immunology, 1996, 26, 1748-1755.	2.9	77
41	Viral hijacking of the host ubiquitin system to evade interferon responses. Current Opinion in Microbiology, 2010, 13, 517-523.	5.1	77
42	Immune evasion by a novel family of viral PHD/LAP-finger proteins of gamma-2 herpesviruses and poxviruses. Virus Research, 2002, 88, 55-69.	2.2	76
43	Membrane-Associated RING-CH Proteins Associate with Bap31 and Target CD81 and CD44 to Lysosomes. PLoS ONE, 2010, 5, e15132.	2.5	74
44	Global Organization and Function of Mammalian Cytosolic Proteasome Pools: Implications for PA28 and 19S Regulatory Complexes. Molecular Biology of the Cell, 2006, 17, 4962-4971.	2.1	71
45	Cowpox Virus Inhibits the Transporter Associated with Antigen Processing to Evade T Cell Recognition. Cell Host and Microbe, 2009, 6, 433-445.	11.0	68
46	Varicella Viruses Inhibit Interferon-Stimulated JAK-STAT Signaling through Multiple Mechanisms. PLoS Pathogens, 2015, 11, e1004901.	4.7	67
47	Viral Takeover of the Host Ubiquitin System. Frontiers in Microbiology, 2011, 2, 161.	3.5	66
48	CD8+ T cell programming by cytomegalovirus vectors: applications in prophylactic and therapeutic vaccination. Current Opinion in Immunology, 2017, 47, 52-56.	5.5	64
49	Remodeling of Endothelial Adherens Junctions by Kaposi's Sarcoma-Associated Herpesvirus. Journal of Virology, 2008, 82, 9615-9628.	3.4	60
50	BST2/Tetherin Enhances Entry of Human Cytomegalovirus. PLoS Pathogens, 2011, 7, e1002332.	4.7	60
51	Differential Ligand Binding to a Human Cytomegalovirus Chemokine Receptor Determines Cell Type–Specific Motility. PLoS Pathogens, 2009, 5, e1000304.	4.7	59
52	Pathogen-derived HLA-E bound epitopes reveal broad primary anchor pocket tolerability and conformationally malleable peptide binding. Nature Communications, 2018, 9, 3137.	12.8	57
53	Rhesus Cytomegalovirus Contains Functional Homologues of US2, US3, US6, and US11. Journal of Virology, 2005, 79, 5786-5798.	3.4	56
54	Peptide Processing Is Critical for T-Cell Memory Inflation and May Be Optimized to Improve Immune Protection by CMV-Based Vaccine Vectors. PLoS Pathogens, 2016, 12, e1006072.	4.7	55

#	Article	IF	CITATIONS
55	The Poxviral RING Protein p28 Is a Ubiquitin Ligase That Targets Ubiquitin to Viral Replication Factories. Journal of Virology, 2005, 79, 597-601.	3.4	54
56	Cowpox Virus Evades CTL Recognition and Inhibits the Intracellular Transport of MHC Class I Molecules. Journal of Immunology, 2007, 178, 1654-1661.	0.8	54
57	Human Cytomegalovirus Immediate Early Glycoprotein US3 Retains MHC Class I Molecules by Transient Association. Traffic, 2000, 1, 318-325.	2.7	50
58	Inhibition of Dengue Virus Infections in Cell Cultures and in AG129 Mice by a Small Interfering RNA Targeting a Highly Conserved Sequence. Journal of Virology, 2011, 85, 10154-10166.	3.4	50
59	Casting a wider net: Immunosurveillance by nonclassical MHC molecules. PLoS Pathogens, 2019, 15, e1007567.	4.7	49
60	Comprehensive Analysis of Varicella-Zoster Virus Proteins Using a New Monoclonal Antibody Collection. Journal of Virology, 2013, 87, 6943-6954.	3.4	48
61	Reevaluation of the Coding Potential and Proteomic Analysis of the BAC-Derived Rhesus Cytomegalovirus Strain 68-1. Journal of Virology, 2012, 86, 8959-8973.	3.4	46
62	Inhibition of Dengue Virus Replication by a Class of Small-Molecule Compounds That Antagonize Dopamine Receptor D4 and Downstream Mitogen-Activated Protein Kinase Signaling. Journal of Virology, 2014, 88, 5533-5542.	3.4	44
63	A Cyclooxygenase-2 Homologue Encoded by Rhesus Cytomegalovirus Is a Determinant for Endothelial Cell Tropism. Journal of Virology, 2004, 78, 12529-12536.	3.4	43
64	Modulation of the host immune response by cowpox virus. Microbes and Infection, 2010, 12, 900-909.	1.9	41
65	T Cell Inactivation by Poxviral B22 Family Proteins Increases Viral Virulence. PLoS Pathogens, 2014, 10, e1004123.	4.7	39
66	Viral proteomics: global evaluation of viruses and their interaction with the host. Expert Review of Proteomics, 2007, 4, 815-829.	3.0	38
67	Cross-Species Rhesus Cytomegalovirus Infection of Cynomolgus Macaques. PLoS Pathogens, 2016, 12, e1006014.	4.7	35
68	Epigraph: A Vaccine Design Tool Applied to an HIV Therapeutic Vaccine and a Pan-Filovirus Vaccine. Scientific Reports, 2016, 6, 33987.	3.3	35
69	HLA-E–restricted, Gag-specific CD8 ⁺ T cells can suppress HIV-1 infection, offering vaccine opportunities. Science Immunology, 2021, 6, .	11.9	35
70	Natural Killer Cell Evasion Is Essential for Infection by Rhesus Cytomegalovirus. PLoS Pathogens, 2016, 12, e1005868.	4.7	35
71	Cytomegaloviral determinants of CD8 ⁺ T cell programming and RhCMV/SIV vaccine efficacy. Science Immunology, 2021, 6, .	11.9	34
72	Sequence, linkage to H2-K , and function of mouse tapasin in MHC class I assembly. Immunogenetics, 1998, 48, 260-265.	2.4	33

#	Article	IF	CITATIONS
73	Functional genomics in virology and antiviral drug discovery. Trends in Biotechnology, 2003, 21, 452-457.	9.3	33
74	Epitopes of the human malaria parasite P. falciparum carried on the surface of HBsAg particles elicit an immune response against the parasite. Vaccine, 1991, 9, 477-484.	3.8	32
75	Rhesus Cytomegalovirus Particles Prevent Activation of Interferon Regulatory Factor 3. Journal of Virology, 2005, 79, 6419-6431.	3.4	32
76	Cloning, Assembly, and Modification of the Primary Human Cytomegalovirus Isolate Toledo by Yeast-Based Transformation-Associated Recombination. MSphere, 2017, 2, .	2.9	32
77	Cytomegalovirus vectors expressing Plasmodium knowlesi antigens induce immune responses that delay parasitemia upon sporozoite challenge. PLoS ONE, 2019, 14, e0210252.	2.5	32
78	Modulation of MHC-E transport by viral decoy ligands is required for RhCMV/SIV vaccine efficacy. Science, 2021, 372, .	12.6	32
79	Identification of cDNA clones of the mouse neural cell adhesion molecule L1. Neuroscience Letters, 1987, 82, 89-94.	2.1	31
80	Pathology of rituximab-induced Kaposi sarcoma flare. BMC Clinical Pathology, 2008, 8, 7.	1.8	31
81	Cowpox Virus Protein CPXV012 Eludes CTLs by Blocking ATP Binding to TAP. Journal of Immunology, 2014, 193, 1578-1589.	0.8	31
82	Nucleotide binding of the C-terminal domains of the major histocompatibility complex-encoded transporter expressed inDrosophila melanogastercells. FEBS Letters, 1994, 350, 337-341.	2.8	30
83	The ORF61 Protein Encoded by Simian Varicella Virus and Varicella-Zoster Virus Inhibits NF-κB Signaling by Interfering with lκBα Degradation. Journal of Virology, 2015, 89, 8687-8700.	3.4	30
84	Cytomegalovirus pp65 limits dissemination but is dispensable for persistence. Journal of Clinical Investigation, 2014, 124, 1928-1944.	8.2	30
85	Virogenomics: a novel approach to antiviral drug discovery. Drug Discovery Today, 2001, 6, 621-627.	6.4	29
86	Signal Peptide-Dependent Inhibition of MHC Class I Heavy Chain Translation by Rhesus Cytomegalovirus. PLoS Pathogens, 2008, 4, e1000150.	4.7	29
87	Flaviviruses Are Sensitive to Inhibition of Thymidine Synthesis Pathways. Journal of Virology, 2013, 87, 9411-9419.	3.4	29
88	Rat Cytomegalovirus Gene Expression in Cardiac Allograft Recipients Is Tissue Specific and Does Not Parallel the Profiles Detected In Vitro. Journal of Virology, 2007, 81, 3816-3826.	3.4	27
89	Characterization of a live-attenuated HCMV-based vaccine platform. Scientific Reports, 2019, 9, 19236.	3.3	26
90	Demarcated thresholds of tumor-specific CD8 T cells elicited by MCMV-based vaccine vectors provide robust correlates of protection. , 2019, 7, 25.		25

#	Article	IF	CITATIONS
91	Control of MHC Class I Traffic from the Endoplasmic Reticulum by Cellular Chaperones and Viral Anti-Chaperones. Traffic, 2000, 1, 306-311.	2.7	23
92	p120-catenin regulates VE-cadherin endocytosis and degradation induced by the Kaposi sarcoma–associated ubiquitin ligase K5. Molecular Biology of the Cell, 2017, 28, 30-40.	2.1	23
93	Enhancing safety of cytomegalovirus-based vaccine vectors by engaging host intrinsic immunity. Science Translational Medicine, 2019, 11, .	12.4	23
94	A Functional Genomics Approach to Kaposi's Sarcoma. Annals of the New York Academy of Sciences, 2002, 975, 180-191.	3.8	22
95	Evasion of adaptive and innate immune response mechanisms by Î ³ -herpesviruses. Current Opinion in Virology, 2013, 3, 285-295.	5.4	22
96	KSHV-K5 Inhibits Phosphorylation of the Major Histocompatibility Complex Class I Cytoplasmic Tail. Virology, 2001, 288, 369-378.	2.4	21
97	In vitro and in vivo characterization of a recombinant rhesus cytomegalovirus containing a complete genome. PLoS Pathogens, 2020, 16, e1008666.	4.7	20
98	MHC-E–Restricted CD8+ T Cells Target Hepatitis B Virus–Infected Human Hepatocytes. Journal of Immunology, 2020, 204, 2169-2176.	0.8	17
99	Myeloid cell tropism enables MHC-E–restricted CD8 ⁺ T cell priming and vaccine efficacy by the RhCMV/SIV vaccine. Science Immunology, 2022, 7, .	11.9	16
100	A new tool for the serodiagnosis of acute Plasmodium falciparum malaria in individuals with primary infection. Journal of Immunological Methods, 1989, 122, 25-32.	1.4	15
101	Insulin-Like Growth Factor II Receptor-Mediated Intracellular Retention of Cathepsin B Is Essential for Transformation of Endothelial Cells by Kaposi's Sarcoma-Associated Herpesvirus. Journal of Virology, 2007, 81, 8050-8062.	3.4	15
102	Quantitative membrane proteomics reveals a role for tetraspanin enriched microdomains during entry of human cytomegalovirus. PLoS ONE, 2017, 12, e0187899.	2.5	15
103	Identification and Functional Characterization of a Novel Fc Gamma-Binding Glycoprotein in Rhesus Cytomegalovirus. Journal of Virology, 2019, 93, .	3.4	14
104	Tollip-induced down-regulation of MARCH1. Results in Immunology, 2013, 3, 17-25.	2.2	13
105	The Cytoplasmic Domain of Rhesus Cytomegalovirus Rh178 Interrupts Translation of Major Histocompatibility Class I Leader Peptide-Containing Proteins prior to Translocation. Journal of Virology, 2011, 85, 8766-8776.	3.4	11
106	Full genome sequence analysis of a novel adenovirus of rhesus macaque origin indicates a new simian adenovirus type and species. Virology Reports, 2014, 3-4, 18-29.	0.4	11
107	Antagonism of the Protein Kinase R Pathway in Human Cells by Rhesus Cytomegalovirus. Journal of Virology, 2018, 92, .	3.4	11
108	The T cell reactivity against the major merozoite protein of Plasmodium falciparum. Immunology Letters, 1990, 25, 143-148.	2.5	10

#	Article	IF	CITATIONS
109	Functional genomics and the development of pathogenesis-targeted therapies for Kaposi's sarcoma. Pharmacogenomics, 2005, 6, 235-244.	1.3	10
110	On the road to systems biology of host–pathogen interactions. Future Microbiology, 2010, 5, 131-133.	2.0	10
111	CD31 Immunohistochemical Staining in Kaposi Sarcoma. Archives of Pathology and Laboratory Medicine, 2012, 136, 1329-1329.	2.5	7
112	Stabilization and formulation of a recombinant Human Cytomegalovirus vector for use as a candidate HIV-1 vaccine. Vaccine, 2019, 37, 6696-6706.	3.8	7
113	A Fluorescence-Based High Throughput Screen for the Transporter Associated with Antigen Processing. Journal of Biomolecular Screening, 1999, 4, 87-91.	2.6	6
114	Vaccine-Mediated Inhibition of the Transporter Associated with Antigen Processing Is Insufficient To Induce Major Histocompatibility Complex E-Restricted CD8 ⁺ T Cells in Nonhuman Primates. Journal of Virology, 2019, 93, .	3.4	5
115	Identification and Characterization of Antigen-Specific CD8+ T Cells Using Surface-Trapped TNF-α and Single-Cell Sequencing. Journal of Immunology, 2021, , ji2100535.	0.8	2
116	De-risking human cytomegalovirus vaccine clinical development in relevant preclinical models. Journal of Infectious Diseases, 2022, , .	4.0	1
117	Kaposi's sarcoma and human dermal microvascular endothelial cells infected with Kaposi's sarcoma-associated herpesvirus express CCL21. Journal of Dermatological Science, 2011, 61, 139-142.	1.9	0
118	Title is missing!. , 2020, 16, e1008666.		0
119	Title is missing!. , 2020, 16, e1008666.		0
120	Title is missing!. , 2020, 16, e1008666.		0
121	Title is missing!. , 2020, 16, e1008666.		Ο