
Anita M Preininger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1442782/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Leveraging conversational technology to answer common COVID-19 questions. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 850-855.	4.4	21
2	Artificial Intelligence Clinical Evidence Engine for Automatic Identification, Prioritization, and Extraction of Relevant Clinical Oncology Research. JCO Clinical Cancer Informatics, 2021, 5, 102-111.	2.1	10
3	Accuracy of an Artificial Intelligence System for Cancer Clinical Trial Eligibility Screening: Retrospective Pilot Study. JMIR Medical Informatics, 2021, 9, e27767.	2.6	23
4	Differences in information accessed in a pharmacologic knowledge base using a conversational agent vs traditional search methods. International Journal of Medical Informatics, 2021, 153, 104530.	3.3	7
5	Comparison of an oncology clinical decision-support system's recommendations with actual treatment decisions. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 832-838.	4.4	13
6	Evaluation of an artificial intelligence clinical trial matching system in Australian lung cancer patients. JAMIA Open, 2020, 3, 209-215.	2.0	30
7	Effect of an Artificial Intelligence Clinical Decision Support System on Treatment Decisions for Complex Breast Cancer. JCO Clinical Cancer Informatics, 2020, 4, 824-838.	2.1	19
8	Artificial intelligence-based conversational agent to support medication prescribing. JAMIA Open, 2020, 3, 225-232.	2.0	11
9	Artificial Intelligence Tool for Optimizing Eligibility Screening for Clinical Trials in a Large Community Cancer Center. JCO Clinical Cancer Informatics, 2020, 4, 50-59.	2.1	47
10	A blinded evaluation of a clinical decision-support system at a regional cancer care center Journal of Clinical Oncology, 2019, 37, 6553-6553.	1.6	2
11	Use of machine learning to identify relevant research publications in clinical oncology Journal of Clinical Oncology, 2019, 37, 6558-6558.	1.6	3
12	Gβγ directly modulates vesicle fusion by competing with synaptotagmin for binding to neuronal SNARE proteins embedded in membranes. Journal of Biological Chemistry, 2017, 292, 12165-12177.	3.4	32
13	Embedded Mathematics in Chemistry: A Case Study of Students' Attitudes and Mastery. Journal of Science Education and Technology, 2017, 26, 58-69.	3.9	5
14	Energetic analysis of the rhodopsin–G-protein complex links the α5 helix to GDP release. Nature Structural and Molecular Biology, 2014, 21, 56-63.	8.2	64
15	A Transient Interaction between the Phosphate Binding Loop and Switch I Contributes to the Allosteric Network between Receptor and Nucleotide in Gαi1. Journal of Biological Chemistry, 2014, 289, 11331-11341.	3.4	7
16	Crystal structures of acetate kinases from the eukaryotic pathogens Entamoeba histolytica and Cryptococcus neoformans. Journal of Structural Biology, 2013, 181, 185-189.	2.8	10
17	Linking receptor activation to changes in Sw I and II of Cα proteins. Journal of Structural Biology, 2013, 184, 63-74.	2.8	9
18	Conformational Flexibility and Structural Dynamics in GPCR-Mediated G Protein Activation: A Perspective. Journal of Molecular Biology, 2013, 425, 2288-2298.	4.2	89

ANITA M PREININGER

#	Article	IF	CITATIONS
19	Communicating a Nobel Signal: Exploration of the Heterotrimeric G protein. FASEB Journal, 2013, 27, lb164.	0.5	0
20	Myristoylation Exerts Direct and Allosteric Effects on Gα Conformation and Dynamics in Solution. Biochemistry, 2012, 51, 1911-1924.	2.5	16
21	Molecular Determinants of GPCR-G Protein Complex Formation. Biophysical Journal, 2012, 102, 31a-32a.	0.5	Ο
22	Allosteric Mechanisms of G Protein-Coupled Receptor Signaling: A Structural Perspective. Methods in Molecular Biology, 2012, 796, 133-174.	0.9	13
23	Coupling Efficiency of Rhodopsin and Transducin in Bicelles. Biochemistry, 2011, 50, 3193-3203.	2.5	25
24	Interaction of a G protein with an activated receptor opens the interdomain interface in the alpha subunit. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9420-9424.	7.1	145
25	Coupling Efficiency of Rhodopsin and Transducin in the Bicelle Mixtures. FASEB Journal, 2010, 24, 769.7.	0.5	0
26	Irreversible Platelet Activation Requires Protease-Activated Receptor 1-Mediated Signaling to Phosphatidylinositol Phosphates. Molecular Pharmacology, 2009, 76, 301-313.	2.3	27
27	Trp fluorescence reveals an activationâ€dependent cationâ€ï€ interaction in the Switch II region of Gî± _i proteins. Protein Science, 2009, 18, 2326-2335.	7.6	17
28	Helix Dipole Movement and Conformational Variability Contribute to Allosteric GDP Release in Gαi Subunits,. Biochemistry, 2009, 48, 2630-2642.	2.5	21
29	Myristoylation and its role in conformational changes associated with Galphai subunit activation. FASEB Journal, 2009, 23, 879.9.	0.5	0
30	Receptor-Mediated Changes at the Myristoylated Amino Terminus of Gα _{il} Proteins. Biochemistry, 2008, 47, 10281-10293.	2.5	17
31	An intramolecular binding site for the myristoylated aminoâ€ŧerminus of Gα i. FASEB Journal, 2008, 22, 812.9.	0.5	0
32	PAR1â€mediated stable platelet aggregation requires temporal regulation of Rap1 activity by phosphatidylinositol phosphates (PIPns) FASEB Journal, 2008, 22, 646.3.	0.5	0
33	Biochemical Analysis of Phospholipase D. Methods in Enzymology, 2007, 434, 49-87.	1.0	86
34	Mapping allosteric connections from the receptor to the nucleotide-binding pocket of heterotrimeric G proteins. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7927-7932.	7.1	59
35	Quantification of Diacylglycerol Species from Cellular Extracts by Electrospray Ionization Mass Spectrometry Using a Linear Regression Algorithm. Analytical Chemistry, 2007, 79, 263-272.	6.5	70
36	The crystal structure of the fast exchange mutant I56C/Q333C in Gα _{i1} suggests a mechanism for receptorâ€mediated allosteric nucleotide exchange. FASEB Journal, 2007, 21, A613.	0.5	0

ANITA M PREININGER

#	Article	IF	CITATIONS
37	Irreversible Platelet Activation Requires PAR1 Regulation of Phosphatidylinositol Phosphates (PIPns) Activation of Rap1 Blood, 2007, 110, 3889-3889.	1.4	0
38	Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins. Nature Structural and Molecular Biology, 2006, 13, 772-777.	8.2	171
39	Direct Modulation of Phospholipase D Activity by Gβγ. Molecular Pharmacology, 2006, 70, 311-318.	2.3	41
40	G protein βγ directly regulates SNARE protein fusion machinery for secretory granule exocytosis. Nature Neuroscience, 2005, 8, 421-425.	14.8	154
41	G Protein Signaling: Insights from New Structures. Science Signaling, 2004, 2004, re3-re3.	3.6	47
42	The Myristoylated Amino Terminus of Gαi1 Plays a Critical Role in the Structure and Function of Gαi1 Subunits in Solution. Biochemistry, 2003, 42, 7931-7941.	2.5	39
43	Insights into G Protein Structure, Function, and Regulation. Endocrine Reviews, 2003, 24, 765-781.	20.1	565
44	Conformational Changes in the Amino-Terminal Helix of the G Protein αi1Following Dissociation From Gβγ Subunit and Activation. Biochemistry, 2002, 41, 9962-9972.	2.5	60