J Antoinette Killian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1442085/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and Evaluation of a Library of Alternating Amphipathic Copolymers to Solubilize and Study Membrane Proteins. Biomacromolecules, 2022, 23, 743-759.	2.6	21
2	Membrane-Catalyzed Aggregation of Islet Amyloid Polypeptide Is Dominated by Secondary Nucleation. Biochemistry, 2022, 61, 1465-1472.	1.2	9
3	Mass Photometry of Membrane Proteins. CheM, 2021, 7, 224-236.	5.8	39
4	Factors influencing the solubilization of membrane proteins from Escherichia coli membranes by styrene–maleic acid copolymers. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183125.	1.4	38
5	Iterative RAFT-Mediated Copolymerization of Styrene and Maleic Anhydride toward Sequence- and Length-Controlled Copolymers and Their Applications for Solubilizing Lipid Membranes. Biomacromolecules, 2020, 21, 3287-3300.	2.6	27
6	A Broad-Spectrum Antiviral Peptide Blocks Infection of Viruses by Binding to Phosphatidylserine in the Viral Envelope. Cells, 2020, 9, 1989.	1.8	11
7	The small molecule inhibitor anle145c thermodynamically traps human islet amyloid peptide in the form of non-cytotoxic oligomers. Scientific Reports, 2019, 9, 19023.	1.6	16
8	A simple and convenient method for the hydrolysis of styrene-maleic anhydride copolymers to styrene-maleic acid copolymers. Chemistry and Physics of Lipids, 2019, 218, 85-90.	1.5	25
9	A single mutation on the human amyloid polypeptide modulates fibril growth and affects the mechanism of amyloid-induced membrane damage. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1783-1792.	1.4	14
10	Bacillus subtilis MraY in detergent-free system of nanodiscs wrapped by styrene-maleic acid copolymers. PLoS ONE, 2018, 13, e0206692.	1.1	4
11	Membrane Solubilization by Styrene-Maleic AcidÂCopolymers: Delineating the Role ofÂPolymerÂLength. Biophysical Journal, 2018, 115, 129-138.	0.2	30
12	Protonâ€Đetected Solid‧tate NMR Spectroscopy of a Zinc Diffusion Facilitator Protein in Native Nanodiscs. Angewandte Chemie - International Edition, 2017, 56, 2508-2512.	7.2	70
13	Solubilization of lipids and lipid phases by the styrene–maleic acid copolymer. European Biophysics Journal, 2017, 46, 91-101.	1.2	66
14	Solubilization of human cells by the styrene–maleic acid copolymer: Insights from fluorescence microscopy. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2155-2160.	1.4	19
15	The effectiveness of styrene-maleic acid (SMA) copolymers for solubilisation of integral membrane proteins from SMA-accessible and SMA-resistant membranes. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2133-2143.	1.4	68
16	Protonendetektierte Festkörperâ€NMR‣pektroskopie an einem Zinktransporterâ€Membranprotein in nativen Nanoscheiben. Angewandte Chemie, 2017, 129, 2549-2553.	1.6	5
17	Residue specific effects of human islet polypeptide amyloid on self-assembly and on cell toxicity. Biochimie, 2017, 142, 22-30.	1.3	27
18	Effect of Polymer Composition and pH on Membrane Solubilization by Styrene-Maleic Acid Copolymers. Biophysical Journal, 2016, 111, 1974-1986.	0.2	119

#	Article	IF	CITATIONS
19	A Detergent-Free Approach to Membrane Protein Research: Polymer-Bounded "Native―Nanodiscs. Biophysical Journal, 2016, 110, 580a.	0.2	0
20	Photophysics in single light-harvesting complexes II: from micelle to native nanodisks. , 2016, , .		3
21	The styrene–maleic acid copolymer: a versatile tool in membrane research. European Biophysics Journal, 2016, 45, 3-21.	1.2	338
22	Molecular Model for the Solubilization of Membranes into Nanodisks by Styrene Maleic Acid Copolymers. Biophysical Journal, 2015, 108, 279-290.	0.2	150
23	Activation of the bacterial thermosensor DesK involves a serine zipper dimerization motif that is modulated by bilayer thickness. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6353-6358.	3.3	44
24	<i>E. coli</i> MG1655 modulates its phospholipid composition through the cell cycle. FEBS Letters, 2015, 589, 2726-2730.	1.3	28
25	Isolation of lipids from biological samples. Molecular Membrane Biology, 2015, 32, 55-64.	2.0	37
26	Detergent-free isolation, characterization, and functional reconstitution of a tetrameric K ⁺ channel: The power of native nanodiscs. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18607-18612.	3.3	283
27	Bacterial Reaction Centers Purified with Styrene Maleic Acid Copolymer Retain Native Membrane Functional Properties and Display Enhanced Stability. Angewandte Chemie - International Edition, 2014, 53, 11803-11807.	7.2	125
28	Lipase activity in lipidomics – a hidden problem?. Molecular Membrane Biology, 2013, 30, 347-349.	2.0	4
29	Biophysical Investigation of the Membrane-Disrupting Mechanism of the Antimicrobial and Amyloid-Like Peptide Dermaseptin S9. PLoS ONE, 2013, 8, e75528.	1.1	44
30	Thermodynamic Measurements of Bilayer Insertion of a Single Transmembrane Helix Chaperoned by Fluorinated Surfactants. Journal of Molecular Biology, 2012, 416, 328-334.	2.0	17
31	How Lipid Headgroups Sense the Membrane Environment: An Application of 14N NMR. Biophysical Journal, 2012, 103, 1245-1253.	0.2	19
32	Ruthenium-Decorated Lipid Vesicles: Light-Induced Release of [Ru(terpy)(bpy)(OH2)]2+ and Thermal Back Coordination. Journal of the American Chemical Society, 2011, 133, 252-261.	6.6	75
33	Modeling the Membrane Environment for Membrane Proteins. Biophysical Journal, 2011, 100, 2073-2074.	0.2	16
34	Sterols Have Higher Affinity for Sphingomyelin than for Phosphatidylcholine Bilayers even at Equal Acyl-Chain Order. Biophysical Journal, 2011, 100, 2633-2641.	0.2	78
35	Probing the Lipid-Protein Interface Using Model Transmembrane Peptides with a Covalently Linked Acyl Chain. Biophysical Journal, 2011, 101, 1959-1967.	0.2	9
36	Low pH Acts as Inhibitor of Membrane Damage Induced by Human Islet Amyloid Polypeptide. Journal of the American Chemical Society, 2011, 133, 15598-15604.	6.6	76

#	Article	IF	CITATIONS
37	Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1343-1348.	3.3	220
38	Orientation and dynamics of transmembrane peptides: the power of simple models. European Biophysics Journal, 2010, 39, 609-621.	1.2	114
39	The role of the disulfide bond in the interaction of islet amyloid polypeptide with membranes. European Biophysics Journal, 2010, 39, 1359-1364.	1.2	18
40	The influence of the acyl chain composition of cardiolipin on the stability of mitochondrial complexes; An unexpected effect of cardiolipin in α-ketoglutarate dehydrogenase and prohibitin complexes. Journal of Proteomics, 2010, 73, 806-814.	1.2	26
41	Mechanism and Kinetics of Peptide Partitioning into Membranes from All-Atom Simulations of Thermostable Peptides. Journal of the American Chemical Society, 2010, 132, 3452-3460.	6.6	80
42	Order Parameters of a Transmembrane Helix in a Fluid Bilayer: Case Study of a WALP Peptide. Biophysical Journal, 2010, 98, 1864-1872.	0.2	51
43	Influence of Hydrophobic Mismatch and Amino Acid Composition on the Lateral Diffusion of Transmembrane Peptides. Biophysical Journal, 2010, 99, 1447-1454.	0.2	84
44	Self-Reproduction of Fatty Acid Vesicles: A Combined Experimental andÂSimulation Study. Biophysical Journal, 2010, 99, 1520-1528.	0.2	50
45	The N-terminal fragment of human islet amyloid polypeptide is non-fibrillogenic in the presence of membranes and does not cause leakage of bilayers of physiologically relevant lipid composition. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1805-1811.	1.4	26
46	Aggregation of Transmembrane Peptides Studied by Spin-Label EPR. Journal of Physical Chemistry B, 2009, 113, 12257-12264.	1.2	21
47	Impaired Processing of Human Pro-Islet Amyloid Polypeptide Is Not a Causative Factor for Fibril Formation or Membrane Damage in Vitro. Biochemistry, 2009, 48, 10918-10925.	1.2	21
48	Lateral Diffusion of Membrane Proteins. Journal of the American Chemical Society, 2009, 131, 12650-12656.	6.6	293
49	Peptide Partitioning and Folding into Lipid Bilayers. Journal of Chemical Theory and Computation, 2009, 5, 2202-2205.	2.3	17
50	Activation of phospholipase A2 by temporin B: Formation of antimicrobial peptide-enzyme amyloid-type cofibrils. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1064-1072.	1.4	20
51	Tilt and Rotation Angles of a Transmembrane Model Peptide as Studied by Fluorescence Spectroscopy. Biophysical Journal, 2009, 97, 2258-2266.	0.2	44
52	Looking at membrane lipids from the inside of the cell. Nature Chemical Biology, 2008, 4, 164-165.	3.9	0
53	Influence of Trifluoroethanol on Membrane Interfacial Anchoring Interactions of Transmembrane α-Helical Peptides. Biophysical Journal, 2008, 94, 1315-1325.	0.2	22
54	Protein Self-Assembly and Lipid Binding in the Folding of the Potassium Channel KcsA. Biochemistry, 2008, 47, 2123-2133.	1.2	54

#	Article	IF	CITATIONS
55	ls There a Preferential Interaction between Cholesterol and Tryptophan Residues in Membrane Proteins?. Biochemistry, 2008, 47, 2638-2649.	1.2	26
56	Membrane damage by human islet amyloid polypeptide through fibril growth at the membrane. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6033-6038.	3.3	434
57	Recent Insights in Islet Amyloid Polypeptide-Induced Membrane Disruption and Its Role in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>β</mml:mi>-Cell Death in Type 2 Diabetes Mellitus. Experimental Diabetes Research, 2008, 2008, 1-9.</mml:math 	3.8	110
58	Phosphatidic acid plays a special role in stabilizing and folding of the tetrameric potassium channel KcsA. FEBS Letters, 2007, 581, 5715-5722.	1.3	46
59	On the Orientation of a Designed Transmembrane Peptide:  Toward the Right Tilt Angle?. Journal of the American Chemical Society, 2007, 129, 15174-15181.	6.6	96
60	How Protein Transmembrane Segments Sense the Lipid Environmentâ€. Biochemistry, 2007, 46, 1457-1465.	1.2	144
61	2,2,2-Trifluoroethanol Changes the Transition Kinetics and Subunit Interactions in the Small Bacterial Mechanosensitive Channel MscS. Biophysical Journal, 2007, 92, 2771-2784.	0.2	27
62	Transmembrane Peptides Stabilize Inverted Cubic Phases in a Biphasic Length-Dependent Manner: Implications for Protein-Induced Membrane Fusion. Biophysical Journal, 2006, 90, 200-211.	0.2	42
63	Islet Amyloid Polypeptide Inserts into Phospholipid Monolayers as Monomer. Journal of Molecular Biology, 2006, 356, 783-789.	2.0	170
64	Peptides in lipid bilayers: the power of simple models. Current Opinion in Structural Biology, 2006, 16, 473-479.	2.6	141
65	Striated domains: self-organizing ordered assemblies of transmembrane α-helical peptides and lipids in bilayers. Biological Chemistry, 2006, 387, 235-41.	1.2	10
66	A convenient solid phase synthesis of S-palmitoyl transmembrane peptides. Tetrahedron Letters, 2005, 46, 3341-3345.	0.7	22
67	Detection and Identification of Stable Oligomeric Protein Complexes in Escherichi coli Inner Membranes. Journal of Biological Chemistry, 2005, 280, 28742-28748.	1.6	24
68	Self-association of Transmembrane α-Helices in Model Membranes. Journal of Biological Chemistry, 2005, 280, 39324-39331.	1.6	123
69	Molecular Organization in Striated Domains Induced by Transmembrane α-Helical Peptides in Dipalmitoyl Phosphatidylcholine Bilayersâ€. Biochemistry, 2005, 44, 2-10.	1.2	20
70	A Synergistic Effect between Cholesterol and Tryptophan-Flanked Transmembrane Helices Modulates Membrane Curvatureâ€. Biochemistry, 2005, 44, 4526-4532.	1.2	26
71	Influence of Flanking Residues on Tilt and Rotation Angles of Transmembrane Peptides in Lipid Bilayers. A Solid-State2H NMR Study. Biochemistry, 2005, 44, 1004-1012.	1.2	95
72	Small Alcohols Destabilize the KcsA Tetramer via Their Effect on the Membrane Lateral Pressureâ€. Biochemistry, 2004, 43, 5937-5942.	1.2	45

#	Article	IF	CITATIONS
73	Transbilayer Movement of Phospholipids in Biogenic Membranes. Biochemistry, 2004, 43, 2673-2681.	1.2	98
74	Stability of KcsA Tetramer Depends on Membrane Lateral Pressure. Biochemistry, 2004, 43, 4240-4250.	1.2	82
75	Photo-Crosslinking Analysis of Preferential Interactions between a Transmembrane Peptide and Matching Lipids. Biochemistry, 2004, 43, 4482-4489.	1.2	31
76	Strength of Integration of Transmembrane α-Helical Peptides in Lipid Bilayers As Determined by Atomic Force Spectroscopyâ€. Biochemistry, 2004, 43, 14987-14993.	1.2	38
77	Tilt Angles of Transmembrane Model Peptides in Oriented and Non-Oriented Lipid Bilayers as Determined by 2H Solid-State NMR. Biophysical Journal, 2004, 86, 3709-3721.	0.2	172
78	Islet amyloid polypeptide-induced membrane leakage involves uptake of lipids by forming amyloid fibers. FEBS Letters, 2004, 577, 117-120.	1.3	236
79	Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1666, 275-288.	1.4	372
80	Phospholipid Flop Induced by Transmembrane Peptides in Model Membranes Is Modulated by Lipid Composition. Biochemistry, 2003, 42, 231-237.	1.2	117
81	Interfacial Anchor Properties of Tryptophan Residues in Transmembrane Peptides Can Dominate over Hydrophobic Matching Effects in Peptideâ^'Lipid Interactionsâ€. Biochemistry, 2003, 42, 5341-5348.	1.2	251
82	Interaction of the K+ channel KcsA with membrane phospholipids as studied by ESI mass spectrometry. FEBS Letters, 2003, 541, 28-32.	1.3	57
83	Snorkeling of lysine side chains in transmembrane helices: how easy can it get?. FEBS Letters, 2003, 544, 69-73.	1.3	181
84	Sphingomyelin is much more effective than saturated phosphatidylcholine in excluding unsaturated phosphatidylcholine from domains formed with cholesterol. FEBS Letters, 2003, 547, 101-106.	1.3	91
85	Synthetic peptides as models for intrinsic membrane proteins. FEBS Letters, 2003, 555, 134-138.	1.3	138
86	Hydrophobic Mismatch between Helices and Lipid Bilayers. Biophysical Journal, 2003, 84, 379-385.	0.2	135
87	Protein–lipid interactions studied with designed transmembrane peptides: role of hydrophobic matching and interfacial anchoring (Review). Molecular Membrane Biology, 2003, 20, 271-284.	2.0	277
88	Membrane Interaction of the Glycosyltransferase MurG: a Special Role for Cardiolipin. Journal of Bacteriology, 2003, 185, 3773-3779.	1.0	88
89	Domain Formation in Phosphatidylcholine Bilayers Containing Transmembrane Peptides:Â Specific Effects of Flanking Residuesâ€. Biochemistry, 2002, 41, 2814-2824.	1.2	81
90	Lipid Dependence of Membrane Anchoring Properties and Snorkeling Behavior of Aromatic and Charged Residues in Transmembrane Peptidesâ€. Biochemistry, 2002, 41, 7190-7198.	1.2	106

#	Article	IF	CITATIONS
91	The Effects of Hydrophobic Mismatch between Phosphatidylcholine Bilayers and Transmembrane α-Helical Peptides Depend on the Nature of Interfacially Exposed Aromatic and Charged Residuesâ€. Biochemistry, 2002, 41, 8396-8404.	1.2	94
92	Factors Affecting Gas-Phase Deuterium Scrambling in Peptide Ions and Their Implications for Protein Structure Determination. Journal of the American Chemical Society, 2002, 124, 11191-11198.	6.6	106
93	Importance of Hydrophobic Matching for Spontaneous Insertion of a Single-Spanning Membrane Protein. Biochemistry, 2002, 41, 4946-4952.	1.2	52
94	Components required for membrane assembly of newly synthesized K+channel KcsA. FEBS Letters, 2002, 511, 51-58.	1.3	25
95	Influence of hydrophobic mismatch and palmitoylation on the association of transmembrane α-helical peptides with detergent-resistant membranes. FEBS Letters, 2002, 523, 79-84.	1.3	59
96	Influence of lipids on membrane assembly and stability of the potassium channel KcsA. FEBS Letters, 2002, 525, 33-38.	1.3	74
97	Geometry and Intrinsic Tilt of a Tryptophan-Anchored Transmembrane α-Helix Determined by 2H NMR. Biophysical Journal, 2002, 83, 1479-1488.	0.2	161
98	Characterization of the Thermotropic Behavior and Lateral Organization of Lipid-Peptide Mixtures by a Combined Experimental and Theoretical Approach: Effects of Hydrophobic Mismatch and Role of Flanking Residues. Biophysical Journal, 2002, 82, 1405-1417.	0.2	35
99	Hydrophobic Matching Mechanism Investigated by Molecular Dynamics Simulations. Langmuir, 2002, 18, 1340-1351.	1.6	80
100	Membrane-Spanning Peptides Induce Phospholipid Flop:Â A Model for Phospholipid Translocation across the Inner Membrane ofE. coli. Biochemistry, 2001, 40, 10500-10506.	1.2	82
101	Effect of Nonbilayer Lipids on Membrane Binding and Insertion of the Catalytic Domain of Leader Peptidaseâ€. Biochemistry, 2001, 40, 9677-9684.	1.2	45
102	Sensitivity of Single Membrane-Spanning α-Helical Peptides to Hydrophobic Mismatch with a Lipid Bilayer:  Effects on Backbone Structure, Orientation, and Extent of Membrane Incorporation. Biochemistry, 2001, 40, 5000-5010.	1.2	171
103	Anionic lipids stimulate Secâ€independent insertion of a membrane protein lacking charged amino acid side chains. EMBO Reports, 2001, 2, 403-408.	2.0	43
104	Efficient membrane assembly of the KcsA potassium channel in Escherichia coli requires the protonmotive force. EMBO Reports, 2000, 1, 340-346.	2.0	31
105	The Effect of Peptide/Lipid Hydrophobic Mismatch on the Phase Behavior of Model Membranes Mimicking the Lipid Composition in Escherichia coli Membranes. Biophysical Journal, 2000, 78, 2475-2485.	0.2	55
106	Analysis of the Role of Interfacial Tryptophan Residues in Controlling the Topology of Membrane Proteinsâ€. Biochemistry, 2000, 39, 6521-6528.	1.2	121
107	Visualization of Highly Ordered Striated Domains Induced by Transmembrane Peptides in Supported Phosphatidylcholine Bilayersâ€. Biochemistry, 2000, 39, 5852-5858.	1.2	114
108	Tryptophan-Anchored Transmembrane Peptides Promote Formation of Nonlamellar Phases in Phosphatidylethanolamine Model Membranes in a Mismatch-Dependent Mannerâ€. Biochemistry, 2000, 39, 3124-3133.	1.2	58

#	Article	IF	CITATIONS
109	Different Membrane Anchoring Positions of Tryptophan and Lysine in Synthetic Transmembrane α-Helical Peptides. Journal of Biological Chemistry, 1999, 274, 20839-20846.	1.6	298
110	Membrane Fusion and the Lamellar-to-Inverted-Hexagonal Phase Transition in Cardiolipin Vesicle Systems Induced by Divalent Cations. Biophysical Journal, 1999, 77, 2003-2014.	0.2	121
111	Peptide Influences on Lipids. Novartis Foundation Symposium, 1999, 225, 170-187.	1.2	0
112	Influence of Lipid/Peptide Hydrophobic Mismatch on the Thickness of Diacylphosphatidylcholine Bilayers. A 2H NMR and ESR Study Using Designed Transmembrane α-Helical Peptides and Gramicidin A. Biochemistry, 1998, 37, 9333-9345.	1.2	248
113	Molecular Ordering of Interfacially Localized Tryptophan Analogs in Ester- and Ether-Lipid Bilayers Studied by 2H-NMR. Biophysical Journal, 1998, 75, 1365-1371.	0.2	113
114	Chapter 13 Phospholipid Structure and Escherichia Coli Membranes. Current Topics in Membranes, 1997, , 477-515.	0.5	13
115	Conformation of the Acylation Site of Palmitoylgramicidin in Lipid Bilayers of Dimyristoylphosphatidylcholineâ€. Biochemistry, 1996, 35, 3641-3648.	1.2	26
116	Induction of Nonbilayer Structures in Diacylphosphatidylcholine Model Membranes by Transmembrane α-Helical Peptides: Importance of Hydrophobic Mismatch and Proposed Role of Tryptophansâ€. Biochemistry, 1996, 35, 1037-1045.	1.2	286
117	PhoE Signal Peptide Inserts into Micelles as a Dynamic Helix-Break-Helix Structure, Which Is Modulated by the Environment. A Two-Dimensional 1H NMR Study. Biochemistry, 1995, 34, 11617-11624.	1.2	75
118	Palmitoylation-Induced Conformational Changes of Specific Side Chains in the Gramicidin Transmembrane Channel. Biochemistry, 1995, 34, 9299-9306.	1.2	37
119	Effect of divalent cations on lipid organization of cardiolipin isolated from Escherichia coli strain AH930. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1189, 225-232.	1.4	64
120	Analysis of Circular Dichroism Spectra of Oriented Protein-Lipid Complexes: Toward a General Application. Biochemistry, 1994, 33, 14521-14528.	1.2	99
121	Orientation of the .alphahelixes of apocytochrome c and derived fragments at membrane interfaces, as studied by circular dichroism. Biochemistry, 1994, 33, 14529-14535.	1.2	15
122	A water-lipid interface induces a highly dynamic folded state in apocytochrome c and cytochrome c, which may represent a common folding intermediate. Biochemistry, 1992, 31, 1636-1643.	1.2	102
123	Anionic phospholipids are essential for .alphahelix formation of the signal peptide of prePhoE upon interaction with phospholipid vesicles. Biochemistry, 1992, 31, 1672-1677.	1.2	96
124	Acidic interaction of the colicin A pore-forming domain with model membranes of Escherichia coli lipids results in a large perturbation of acyl chain order and stabilization of the bilayer. Biochemistry, 1992, 31, 11089-11094.	1.2	20
125	Orientation of the valine-1 side chain of the gramicidin transmembrane channel and implications for channel functioning. A deuterium NMR study. Biochemistry, 1992, 31, 11283-11290.	1.2	69
126	Effects of temperature variation and phenethyl alcohol addition on acyl chain order and lipid organization in Escherichia coli derived membrane systems. A 2H- and 31P-NMR study. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1105, 253-262.	1.4	53

#	Article	IF	CITATIONS
127	Gramicidin and gramicidin-lipid interactions. BBA - Biomembranes, 1992, 1113, 391-425.	7.9	209
128	The membrane interaction of amphiphilic model peptides affects phosphatidylserine headgroup and acyl chain order and dynamics. Application of the "phospholipid headgroup electrometer" concept to phosphatidylserine. Biochemistry, 1991, 30, 1155-1162.	1.2	22
129	The mitochondrial precursor protein apocytochrome c strongly influences the order of the headgroup and acyl chains of phosphatidylserine dispersions. A deuterium and phosphorus-31 NMR study. Biochemistry, 1990, 29, 2312-2321.	1.2	21
130	Conformation of gramicidin in relation to its ability to form bilayers with lysophosphatidylcholine. Biochemistry, 1988, 27, 7295-7301.	1.2	32
131	The membrane as an environment of minimal interconversion. A circular dichroism study on the solvent dependence of the conformational behavior of gramicidin in diacylphosphatidylcholine model membranes. Biochemistry, 1988, 27, 4848-4855.	1.2	156
132	Gramicidin-induced hexagonal HII phase formation in negatively charged phospholipids and the effect of N- and C-terminal modification of gramicidin on its interaction with zwitterionic phospholipids. Biochimica Et Biophysica Acta - Biomembranes, 1986, 857, 13-27.	1.4	39
133	Thermodynamic, motional, and structural aspects of the gramicidin-induced hexagonal HII phase formation in phosphatidylethanolamine. Biochemistry, 1985, 24, 7881-7890.	1.2	73
134	Importance of hydration for gramicidin-induced hexagonal HII phase formation in dioleoylphosphatidylcholine model membranes. Biochemistry, 1985, 24, 7890-7898.	1.2	53