Chun-Ming Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1441072/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sol-gel synthesis of TiO2-SiO2 hybrid films with tunable refractive index for broadband antireflective coatings covering the visible range. Journal of Sol-Gel Science and Technology, 2023, 107, 105-121.	2.4	4
2	<i>SGTools:</i> a suite of tools for processing and analyzing large data sets from <i>in situ</i> X-ray scattering experiments. Journal of Applied Crystallography, 2022, 55, 195-203.	4.5	13
3	In Situ Grazing-Incidence SAXS Investigation of Thermal-Induced Self-Assembly Process of PS- <i>b</i> -PMMA Films Deposited on Surface-Modified Substrate. Journal of Physical Chemistry B, 2022, 126, 1625-1632.	2.6	3
4	Side-chain engineering improves molecular stacking and miscibility for efficient fullerene organic solar cells. Journal of Materials Chemistry C, 2022, 10, 6754-6761.	5.5	8
5	Synergistic Effect of Poly(aryl ether ketone) Matrices via Rational Ternary Copolymerization Enables Efficient and Stable Organic Solar Cells. Chemistry of Materials, 2022, 34, 430-439.	6.7	6
6	Hammer throw-liked hybrid cyclic and alkyl chains: A new side chain engineering for over 18 % efficiency organic solar cells. Nano Energy, 2022, 101, 107538.	16.0	27
7	Synergetic Strategy for Highly Efficient and Super Flexible Thickâ€film Organic Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	27
8	Rational Mutual Interactions in Ternary Systems Enable Highâ€Performance Organic Solar Cells. Advanced Functional Materials, 2021, 31, 2007088.	14.9	61
9	Over 15% efficiency all-small-molecule organic solar cells enabled by a C-shaped small molecule donor with tailorable asymmetric backbone. Nano Energy, 2021, 81, 105612.	16.0	96
10	Chemical short-range ordering and its strengthening effect in refractory high-entropy alloys. Physical Review B, 2021, 103, .	3.2	27
11	Identifying tunneling effects of poly(aryl ether) matrices and boosting the efficiency, stability, and stretchability of organic solar cells. Cell Reports Physical Science, 2021, 2, 100408.	5.6	26
12	In situ studies on the positive and negative effects of 1,8-diiodoctane on the device performance and morphology evolution of organic solar cells. Nuclear Science and Techniques/Hewuli, 2021, 32, 1.	3.4	5
13	Benzo <i>bis</i> (Thiazole)-Based Conjugated Polymer with Varying Alkylthio Side-Chain Positions for Efficient Fullerene-Free Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 36071-36079.	8.0	12
14	Overlapping fasten packing enables efficient dual-donor ternary organic solar cells with super stretchability. Energy and Environmental Science, 2021, 14, 5968-5978.	30.8	63
15	Directed Self-assembly of Vertical PS-b-PMMA Nanodomains Grown on Multilayered Polyelectrolyte Films. Chinese Journal of Polymer Science (English Edition), 2020, 38, 92-99.	3.8	11
16	Unusual thickness relaxation of spin-coated polystyrene ultrathin films in the glassy state. Polymer, 2020, 186, 121972.	3.8	5
17	Non-toxic green food additive enables efficient polymer solar cells through adjusting the phase composition distribution and boosting charge transport. Journal of Materials Chemistry C, 2020, 8, 2483-2490.	5.5	51
18	Growth and Termination of Cylindrical Micelles via Liquid-Crystallization-Driven Self-Assembly. Macromolecules, 2020, 53, 8992-8999.	4.8	29

Chun-Ming Yang

#	Article	IF	CITATIONS
19	A Universal Method to Enhance Flexibility and Stability of Organic Solar Cells by Constructing Insulating Matrices in Active Layers. Advanced Functional Materials, 2020, 30, 2003654.	14.9	106
20	Self-assembly of rod-coil block copolymers on a substrate into micrometer-scale ordered stripe nanopatterns. Polymer Chemistry, 2020, 11, 7487-7496.	3.9	5
21	Low-Temperature Preparation of SiO2/Nb2O5/TiO2–SiO2 Broadband Antireflective Coating for the Visible via Acid-Catalyzed Sol–Gel Method. Coatings, 2020, 10, 737.	2.6	11
22	Employing Asymmetrical Thieno[3,4- <i>d</i>]pyridazin-1(2 <i>H</i>)-one Block Enables Efficient Ternary Polymer Solar Cells with Improved Light-Harvesting and Morphological Properties. Macromolecules, 2020, 53, 6619-6629.	4.8	31
23	Construction of Thiazolo[5,4- <i>d</i>]thiazole-based Two-Dimensional Network for Efficient Photocatalytic CO ₂ Reduction. ACS Applied Materials & Interfaces, 2020, 12, 46483-46489.	8.0	43
24	Suppressing the Photocatalytic Activity of Zinc Oxide Electron-Transport Layer in Nonfullerene Organic Solar Cells with a Pyrene-Bodipy Interlayer. ACS Applied Materials & Interfaces, 2020, 12, 21961-21973.	8.0	57
25	Optimized Molecular Packing and Nonradiative Energy Loss Based on Terpolymer Methodology Combining Two Asymmetric Segments for High-Performance Polymer Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 20393-20403.	8.0	9
26	Tuning the morphology of the active layer of organic solar cells by spin 1/2 radicals. New Journal of Chemistry, 2019, 43, 13998-14008.	2.8	4
27	Regulation of Molecular Packing and Blend Morphology by Finely Tuning Molecular Conformation for High-Performance Nonfullerene Polymer Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 44501-44512.	8.0	18
28	Enhanced Organic Photovoltaic Performance through Modulating Vertical Composition Distribution and Promoting Crystallinity of the Photoactive Layer by Diphenyl Sulfide Additives. ACS Applied Materials & Interfaces, 2019, 11, 7022-7029.	8.0	79
29	Ternary Solar Cells Employing Thieno[3,4- <i>b</i>]thiophene-Based Copolymer Offer High Performance with Large Current Density and Fine-Tuned Morphology. Journal of Physical Chemistry C, 2019, 123, 14976-14984.	3.1	14
30	Analysis of Dimer Impurity in Polyamidoamine Dendrimer Solutions by Small-angle Neutron Scattering. Chinese Journal of Polymer Science (English Edition), 2019, 37, 827-833.	3.8	10
31	In-situ GISAXS investigation of the structure evolution mechanism of template removal of ordered mesoporous films prepared via a soft-templating method. Applied Surface Science, 2019, 479, 776-785.	6.1	4
32	Bioinspired Shear-Flow-Driven Layer-by-Layer <i>in Situ</i> Self-Assembly. ACS Nano, 2019, 13, 1910-1922.	14.6	10
33	Superhydrophilic Antireflective Periodic Mesoporous Organosilica Coating on Flexible Polyimide Substrate with Strong Abrasion-Resistance. ACS Applied Materials & Interfaces, 2017, 9, 5468-5476.	8.0	33
34	Reorientation of the poly(3-hydroxybutyrate- co -3-hydroxyhexanoate) crystal in thin film induced by polyethylene glycol. Polymer, 2017, 120, 59-67.	3.8	13
35	High Extinction Coefficient Thieno[3,4- <i>b</i>]thiophene-Based Copolymer for Efficient Fullerene-Free Solar Cells with Large Current Density. Chemistry of Materials, 2017, 29, 6766-6771.	6.7	56
36	Thermochromic VO ₂ films from ammonium citrato-oxovanadate(<scp>iv</scp>) with excellent optical and phase transition properties. Journal of Materials Chemistry C, 2016, 4, 5281-5288.	5.5	19

Chun-Ming Yang

#	Article	IF	CITATIONS
37	In situ synchrotron small- and wide-angle X-ray study on the structural evolution of Kevlar fiber under uniaxial stretching. RSC Advances, 2016, 6, 81552-81558.	3.6	9
38	Local Grafting of Ionic Liquid in Poly(vinylidene fluoride) Amorphous Region and the Subsequent Microphase Separation Behavior in Melt. Macromolecular Rapid Communications, 2016, 37, 1559-1565.	3.9	12
39	Novel donor–acceptor polymers containing o-fluoro-p-alkoxyphenyl-substituted benzo[1,2-b:4,5-b′]dithiophene units for polymer solar cells with power conversion efficiency exceeding 9%. Journal of Materials Chemistry A, 2016, 4, 10212-10222.	10.3	52
40	Broadband antireflective double-layer mesoporous silica coating with strong abrasion-resistance for solar cell glass. RSC Advances, 2016, 6, 25191-25197.	3.6	23
41	Probing the surface microstructure of layer-by-layer self-assembly chitosan/poly(l -glutamic acid) multilayers: A grazing-incidence small-angle X-ray scattering study. Materials Science and Engineering C, 2016, 58, 352-358.	7.3	15
42	A general model for estimating the ordering of mesoporous film by grazing incidence small angle X-ray scattering. Journal of Applied Physics, 2014, 115, 204311.	2.5	5
43	Depth-dependent inhomogeneous characteristics in supported glassy polystyrene films revealed by ultra-low X-ray reflectivity measurements. Polymer Journal, 2014, 46, 873-879.	2.7	6
44	<i>In situ</i> small angle Xâ€ray scattering study on structural evolution of crosslinked polytetrafluoroethylene during deformation. Journal of Applied Polymer Science, 2014, 131, .	2.6	1
45	Confinement effects on glass transition temperature, transition breadth, and linear expansivity: An ultraslow X-ray reflectivity study on supported ultrathin polystyrene films. European Physical Journal E, 2013, 36, 66.	1.6	15
46	Broadening, no broadening and narrowing of glass transition of supported polystyrene ultrathin films emerging under ultraslow temperature variations. Polymer Journal, 2011, 43, 390-397.	2.7	9
47	Thickness Anomalies in Supported Polystyrene Films with Thicknesses Comparable to the Radius of Gyration. Polymer Journal, 2009, 41, 1036-1040.	2.7	7
48	Functionalized BODIPYs as Tailorâ€Made and Universal Interlayers for Efficient and Stable Organic and Perovskite Solar Cells. Advanced Materials Interfaces, 0, , 2102324.	3.7	3