Gregor Gorjanc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1441030/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient ancestry and mutation simulation with msprime 1.0. Genetics, 2022, 220, .	2.9	133
2	Temporal and genomic analysis of additive genetic variance in breeding programmes. Heredity, 2022, 128, 21-32.	2.6	13
3	Rare and population-specific functional variation across pig lines. Genetics Selection Evolution, 2022, 54, .	3.0	9
4	Phasing and imputation of single nucleotide polymorphism data of missing parents of biparental plant populations. Crop Science, 2021, 61, 2243-2253.	1.8	5
5	Robust modeling of additive and nonadditive variation with intuitive inclusion of expert knowledge. Genetics, 2021, 217, .	2.9	4
6	Modeling Illustrates That Genomic Selection Provides New Opportunities for Intercrop Breeding. Frontiers in Plant Science, 2021, 12, 605172.	3.6	22
7	Genomic Selection for Any Dairy Breeding Program via Optimized Investment in Phenotyping and Genotyping. Frontiers in Genetics, 2021, 12, 637017.	2.3	10
8	AlphaPart—R implementation of the method for partitioning genetic trends. Genetics Selection Evolution, 2021, 53, 30.	3.0	9
9	Novel combination of CRISPR-based gene drives eliminates resistance and localises spread. Scientific Reports, 2021, 11, 3719.	3.3	19
10	Genomic evaluation of Brown Swiss dairy cattle with limited national genotype data and integrated external information. Journal of Dairy Science, 2021, 104, 5738-5754.	3.4	3
11	Long-term comparison between index selection and optimal independent culling in plant breeding programs with genomic prediction. PLoS ONE, 2021, 16, e0235554.	2.5	11
12	Association of inbreeding and regional equine leucocyte antigen homozygosity with the prevalence of insect bite hypersensitivity in Old Kladruber horse. Animal Genetics, 2021, 52, 422-430.	1.7	4
13	Genetic variation in recombination rate in the pig. Genetics Selection Evolution, 2021, 53, 54.	3.0	17
14	A genome-wide association analysis for body weight at 35Âdays measured on 137,343 broiler chickens. Genetics Selection Evolution, 2021, 53, 70.	3.0	12
15	Genetic architecture and major genes for backfat thickness in pig lines of diverse genetic backgrounds. Genetics Selection Evolution, 2021, 53, 76.	3.0	35
16	AlphaSimR: an R package for breeding program simulations. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	109
17	A gene drive does not spread easily in populations of the honey bee parasite Varroa destructor. Apidologie, 2021, 52, 1112-1127.	2.0	10
18	Genomic evaluations using data recorded on smallholder dairy farms in low- to middle-income countries. JDS Communications, 2021, 2, 366-370.	1.5	2

#	Article	IF	CITATIONS
19	Spatial modelling improves genetic evaluation in smallholder breeding programs. Genetics Selection Evolution, 2020, 52, 69.	3.0	14
20	AlphaFamImpute: high-accuracy imputation in full-sib families from genotype-by-sequencing data. Bioinformatics, 2020, 36, 4369-4371.	4.1	12
21	Combining QTL Analysis and Genomic Predictions for Four Durum Wheat Populations Under Drought Conditions. Frontiers in Genetics, 2020, 11, 316.	2.3	24
22	On the origin of European sheep as revealed by the diversity of the Balkan breeds and by optimizing population-genetic analysis tools. Genetics Selection Evolution, 2020, 52, 25.	3.0	58
23	Origin Specific Genomic Selection: A Simple Process To Optimize the Favorable Contribution of Parents to Progeny. G3: Genes, Genomes, Genetics, 2020, 10, 2445-2455.	1.8	9
24	In silico simulation of future hybrid performance to evaluate heterotic pool formation in a self-pollinating crop. Scientific Reports, 2020, 10, 4037.	3.3	9
25	Extending long-range phasing and haplotype library imputation algorithms to large and heterogeneous datasets. Genetics Selection Evolution, 2020, 52, 38.	3.0	3
26	Accuracy of whole-genome sequence imputation using hybrid peeling in large pedigreed livestock populations. Genetics Selection Evolution, 2020, 52, 17.	3.0	30
27	Evaluation of sequencing strategies for whole-genome imputation with hybrid peeling. Genetics Selection Evolution, 2020, 52, 18.	3.0	17
28	Hierarchical Modelling of Haplotype Effects on a Phylogeny. Frontiers in Genetics, 2020, 11, 531218.	2.3	8
29	How Population Structure Impacts Genomic Selection Accuracy in Cross-Validation: Implications for Practical Breeding. Frontiers in Plant Science, 2020, 11, 592977.	3.6	39
30	Parentage assignment with genotypingâ€byâ€sequencing data. Journal of Animal Breeding and Genetics, 2019, 136, 102-112.	2.0	23
31	Family-specific genotype arrays increase the accuracy of pedigree-based imputation at very low marker densities. Genetics Selection Evolution, 2019, 51, 33.	3.0	9
32	The Fest Issue on Robin Thompson's contributions to statistics, genetics and animal/plant genetic improvement schemes. Journal of Animal Breeding and Genetics, 2019, 136, 229-229.	2.0	0
33	Flexible modelling of spatial variation in agricultural field trials with the R package INLA. Theoretical and Applied Genetics, 2019, 132, 3277-3293.	3.6	23
34	The effects of training population design on genomic prediction accuracy in wheat. Theoretical and Applied Genetics, 2019, 132, 1943-1952.	3.6	63
35	Removal of alleles by genome editing (RAGE) against deleterious load. Genetics Selection Evolution, 2019, 51, 14.	3.0	44
36	Analysis of a large dataset reveals haplotypes carrying putatively recessive lethal and semi-lethal alleles with pleiotropic effects on economically important traits in beef cattle. Genetics Selection Evolution, 2019, 51, 9.	3.0	24

#	Article	IF	CITATIONS
37	Efficient use of genomic information for sustainable genetic improvement in small cattle populations. Journal of Dairy Science, 2019, 102, 9971-9982.	3.4	12
38	A Strategy To Exploit Surrogate Sire Technology in Livestock Breeding Programs. G3: Genes, Genomes, Genetics, 2019, 9, 203-215.	1.8	26
39	Impact of index hopping and bias towards the reference allele on accuracy of genotype calls from low-coverage sequencing. Genetics Selection Evolution, 2018, 50, 64.	3.0	38
40	Hybrid peeling for fast and accurate calling, phasing, and imputation with sequence data of any coverage in pedigrees. Genetics Selection Evolution, 2018, 50, 67.	3.0	46
41	Sequence variation, evolutionary constraint, and selection at the CD163 gene in pigs. Genetics Selection Evolution, 2018, 50, 69.	3.0	11
42	Assessment of the performance of hidden Markov models for imputation in animal breeding. Genetics Selection Evolution, 2018, 50, 44.	3.0	14
43	A heuristic method for fast and accurate phasing and imputation of single-nucleotide polymorphism data in bi-parental plant populations. Theoretical and Applied Genetics, 2018, 131, 2345-2357.	3.6	20
44	Improvement of pork characteristics under commercial conditions with small amount of straw or hay. Journal of Applied Animal Research, 2018, 46, 1317-1322.	1.2	6
45	Genomic Prediction Using Individual-Level Data and Summary Statistics from Multiple Populations. Genetics, 2018, 210, 53-69.	2.9	15
46	AlphaMate: a program for optimizing selection, maintenance of diversity and mate allocation in breeding programs. Bioinformatics, 2018, 34, 3408-3411.	4.1	36
47	Optimal cross selection for long-term genetic gain in two-part programs with rapid recurrent genomic selection. Theoretical and Applied Genetics, 2018, 131, 1953-1966.	3.6	120
48	Potential of gene drives with genome editing to increase genetic gain in livestock breeding programs. Genetics Selection Evolution, 2017, 49, 3.	3.0	28
49	Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nature Genetics, 2017, 49, 1297-1303.	21.4	263
50	Prospects for Costâ€Effective Genomic Selection via Accurate Withinâ€Family Imputation. Crop Science, 2017, 57, 216-228.	1.8	48
51	A hybrid method for the imputation of genomic data in livestock populations. Genetics Selection Evolution, 2017, 49, 30.	3.0	34
52	A method for the allocation of sequencing resources in genotyped livestock populations. Genetics Selection Evolution, 2017, 49, 47.	3.0	27
53	National single-step genomic method that integrates multi-national genomic information. Journal of Dairy Science, 2017, 100, 465-478.	3.4	16
54	A method for allocating low-coverage sequencing resources by targeting haplotypes rather than individuals. Genetics Selection Evolution, 2017, 49, 78.	3.0	34

#	Article	IF	CITATIONS
55	The potential of shifting recombination hotspots to increase genetic gain in livestock breeding. Genetics Selection Evolution, 2017, 49, 55.	3.0	18
56	A Twoâ€Part Strategy for Using Genomic Selection to Develop Inbred Lines. Crop Science, 2017, 57, 2372-2386.	1.8	140
57	Potential of Lowâ€Coverage Genotypingâ€byâ€Sequencing and Imputation for Costâ€Effective Genomic Selection in Biparental Segregating Populations. Crop Science, 2017, 57, 1404-1420.	1.8	64
58	AlphaSim: Software for Breeding Program Simulation. Plant Genome, 2016, 9, plantgenome2016.02.0013.	2.8	105
59	Effect of manipulating recombination rates on response to selection in livestock breeding programs. Genetics Selection Evolution, 2016, 48, 44.	3.0	33
60	Promotion of alleles by genome editing in livestock breeding programmes. Journal of Animal Breeding and Genetics, 2016, 133, 83-84.	2.0	37
61	Initiating maize pre-breeding programs using genomic selection to harness polygenic variation from landrace populations. BMC Genomics, 2016, 17, 30.	2.8	92
62	Genetic identification of thiosulfate sulfurtransferase as an adipocyte-expressed antidiabetic target in mice selected for leanness. Nature Medicine, 2016, 22, 771-779.	30.7	57
63	Partition of genetic trends by origin in Landrace and Large-White pigs. Animal, 2015, 9, 1605-1609.	3.3	8
64	Imputation of Single Nucleotide Polymorphism Genotypes in Biparental, Backcross, and Topcross Populations with a Hidden Markov Model. Crop Science, 2015, 55, 1934-1946.	1.8	37
65	Reliability of pedigree-based and genomic evaluations in selected populations. Genetics Selection Evolution, 2015, 47, 65.	3.0	54
66	Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs. Genetics Selection Evolution, 2015, 47, 55.	3.0	125
67	Potential of genotyping-by-sequencing for genomic selection in livestock populations. Genetics Selection Evolution, 2015, 47, 12.	3.0	107
68	Recovery of Native Genetic Background in Admixed Populations Using Haplotypes, Phenotypes, and Pedigree Information – Using Cika Cattle as a Case Breed. PLoS ONE, 2015, 10, e0123253.	2.5	19
69	Estimation of additive and dominance variance for litter size components in rabbits. Czech Journal of Animal Science, 2014, 59, 182-189.	1.3	15
70	Evaluation of Genomic Selection Training Population Designs and Genotyping Strategies in Plant Breeding Programs Using Simulation. Crop Science, 2014, 54, 1476-1488.	1.8	164
71	AlphaMPSim: flexible simulation of multi-parent crosses. Bioinformatics, 2014, 30, 2686-2688.	4.1	6
72	Genetic parameters for litter size in Black Slavonian pigs. Spanish Journal of Agricultural Research, 2014, 12, 89.	0.6	12

#	Article	IF	CITATIONS
73	Genetic prediction of complex traits: integrating infinitesimal and marked genetic effects. Genetica, 2013, 141, 239-246.	1.1	1
74	Comparison between sire-maternal grandsire and animal models for genetic evaluation of longevity in a dairy cattle population with small herds. Journal of Dairy Science, 2013, 96, 8002-8013.	3.4	15
75	Genomic evaluations using similarity between haplotypes. Journal of Animal Breeding and Genetics, 2013, 130, 259-269.	2.0	31
76	Accuracy of genomic prediction for milk production traits with different approaches in a small population of Slovenian Brown bulls. Livestock Science, 2013, 157, 421-426.	1.6	3
77	Genotype Imputation to Increase Sample Size in Pedigreed Populations. Methods in Molecular Biology, 2013, 1019, 395-410.	0.9	8
78	The contribution of dominance and inbreeding depression in estimating variance components for litter size in Pannon White rabbits. Journal of Animal Breeding and Genetics, 2013, 130, 303-311.	2.0	19
79	Genetic and environmental parameters estimation for milk traits in Slovenian dairy sheep using random regression model. Czech Journal of Animal Science, 2013, 58, 125-135.	1.3	6
80	Simulated Data for Genomic Selection and Genome-Wide Association Studies Using a Combination of Coalescent and Gene Drop Methods. G3: Genes, Genomes, Genetics, 2012, 2, 425-427.	1.8	61
81	Lactation curves for milk yield, fat and protein content in Slovenian dairy sheep. Czech Journal of Animal Science, 2012, 57, 231-239.	1.3	12
82	Analysis of longevity in Slovenian holstein cattle. Acta Agriculturae Slovenica, 2011, 98, .	0.3	7
83	Effects of two probiotic additives containing Bacillus spores on carcass characteristics, blood lipids and cecal volatile fatty acids in meat type chickens. Journal of Animal Physiology and Animal Nutrition, 2011, 95, 424-433.	2.2	16
84	Congenic and bioinformatics analyses resolved a major-effect Fob3b QTL on mouse Chr 15 into two closely linked loci. Mammalian Genome, 2010, 21, 172-185.	2.2	22
85	Evaluation of different approaches for the estimation of daily yield from single milk testing scheme in cattle. Journal of Dairy Research, 2010, 77, 137-143.	1.4	6
86	Inference of genotype probabilities and derived statistics for PrP locus in the Jezersko–Solcava sheep. Livestock Science, 2010, 129, 232-236.	1.6	1
87	Simplereparameterization to improveconvergence in linearmixedmodels. Acta Agriculturae Slovenica, 2010, 96, .	0.3	Ο
88	Covariance components by a repeatability model in Slovenian dairy sheep using test-day records. Czech Journal of Animal Science, 2009, 54, 426-434.	1.3	14
89	Analysis of inbreeding in Slovenian Haflinger population. Italian Journal of Animal Science, 2009, 8, 128-130.	1.9	0
90	Growth performance of station tested rams in Slovenia. Italian Journal of Animal Science, 2009, 8, 74-76.	1.9	1

#	Article	IF	CITATIONS
91	Genotoxicity evaluation of water soil leachates by Ames test, comet assay, and preliminary Tradescantia micronucleus assay. Environmental Monitoring and Assessment, 2008, 139, 107-118.	2.7	58
92	Porous Concrete Block as an Environmental Enrichment Device Increases Activity of Laying Hens in Cages. Poultry Science, 2008, 87, 1714-1719.	3.4	2
93	Straw or hay as environmental improvement and its effect on behaviour and production traits of fattening pigs. Archives Animal Breeding, 2008, 51, 549-559.	1.4	9
94	Assessment of differential expression of oncogenes in adenocarcinoma of stomach with fluorescent labeling and simultaneous amplification of gene transcripts. Radiology and Oncology, 2007, 41, 174.	1.7	2
95	Comet Assay Assessment of Wastewater Genotoxicity Using Yeast Cells. Bulletin of Environmental Contamination and Toxicology, 2004, 72, 607-616.	2.7	24