Jian Rao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/14409/publications.pdf

Version: 2024-02-01

	236925	315739
1,930	25	38
citations	h-index	g-index
92	92	1138
docs citations	times ranked	citing authors
	1,930 citations 92 docs citations	1,930 25 citations h-index 92 92

#	Article	IF	CITATIONS
1	A QBO Cookbook: Sensitivity of the Quasiâ€Biennial Oscillation to Resolution, Resolved Waves, and Parameterized Gravity Waves. Journal of Advances in Modeling Earth Systems, 2022, 14, e2021MS002568.	3.8	16
2	A dissection of the topographic effects from Eurasia and North America on the isentropic meridional mass circulation in Northern Winter. Climate Dynamics, 2022, 59, 1555-1578.	3.8	1
3	An Isentropic Mass Circulation View on the Extreme Cold Events in the 2020/21 Winter. Advances in Atmospheric Sciences, 2022, 39, 643-657.	4.3	19
4	Mean State of the Northern Hemisphere Stratospheric Polar Vortex in Three Generations of CMIP Models. Journal of Climate, 2022, 35, 4603-4625.	3.2	15
5	Impact of the Scandinavian Pattern on Long-Lived Cold Surges over the South China Sea. Journal of Climate, 2022, 35, 1773-1785.	3.2	9
6	On the Relationship Between the Stratospheric Quasiâ€Biennial Oscillation and Summer Precipitation in Northern China. Geophysical Research Letters, 2022, 49, .	4.0	7
7	Simulation and projection of the sudden stratospheric warming events in different scenarios by CESM2-WACCM. Climate Dynamics, 2022, 59, 3741-3761.	3.8	9
8	Observational Subseasonal Variability of the PM2.5 Concentration in the Beijing-Tianjin-Hebei Area during the January 2021 Sudden Stratospheric Warming. Advances in Atmospheric Sciences, 2022, 39, 1623-1636.	4.3	11
9	Projected changes of stratospheric final warmings in the Northern and Southern Hemispheres by CMIP5/6 models. Climate Dynamics, 2021, 56, 3353-3371.	3.8	23
10	Northern Hemisphere Sudden Stratospheric Warming and Its Downward Impact in Four Chinese CMIP6 Models. Advances in Atmospheric Sciences, 2021, 38, 187-202.	4.3	21
11	CMIP5/6 models project little change in the statistical characteristics of sudden stratospheric warmings in the 21st century. Environmental Research Letters, 2021, 16, 034024.	5.2	33
12	Influence of the El Niño–Southern Oscillation on entry stratospheric water vapor in coupled chemistry–ocean CCMI and CMIP6 models. Atmospheric Chemistry and Physics, 2021, 21, 3725-3740.	4.9	8
13	The Strong Stratospheric Polar Vortex in March 2020 in Subâ€Seasonal to Seasonal Models: Implications for Empirical Prediction of the Low Arctic Total Ozone Extreme. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034190.	3.3	17
14	The Impact of Split and Displacement Sudden Stratospheric Warmings on the Troposphere. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033989.	3.3	14
15	Downward propagation of sudden stratospheric warming signals and the local environment in the Beijing-Tianjin-Hebei region: A comparative study of the 2018 and 2019 winter cases. Atmospheric Research, 2021, 254, 105514.	4.1	14
16	The sudden stratospheric warming in January 2021. Environmental Research Letters, 2021, 16, 084029.	5. 2	40
17	The January 2021 Sudden Stratospheric Warming and Its Prediction in Subseasonal to Seasonal Models. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035057.	3.3	26
18	Climatological features of blocking highs from the perspective of air mass and mass transport. International Journal of Climatology, 2020, 40, 782-794.	3.5	3

#	Article	IF	CITATIONS
19	Modeling study of the destructive interference between the tropical Indian Ocean and eastern Pacific in their forcing in the southern winter extratropical stratosphere during ENSO. Climate Dynamics, 2020, 54, 2249-2266.	3.8	20
20	Sub-seasonal variability of surface soil moisture over eastern China. Climate Dynamics, 2020, 55, 3527-3541.	3.8	4
21	Arctic Ozone Loss in March 2020 and its Seasonal Prediction in CFSv2: A Comparative Study With the 1997 and 2011 Cases. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033524.	3.3	40
22	Projected Strengthening of the Extratropical Surface Impacts of the Stratospheric Quasiâ€Biennial Oscillation. Geophysical Research Letters, 2020, 47, e2020GL089149.	4.0	16
23	The Southern Hemisphere Minor Sudden Stratospheric Warming in September 2019 and its Predictions in S2S Models. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032723.	3.3	63
24	Predictability of the early winter Arctic oscillation from autumn Eurasian snowcover in subseasonal forecast models. Climate Dynamics, 2020, 55, 961-974.	3.8	14
25	Predicting the Downward and Surface Influence of the February 2018 and January 2019 Sudden Stratospheric Warming Events in Subseasonal to Seasonal (S2S) Models. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031919.	3.3	72
26	Impact of the Quasi-Biennial Oscillation on the Northern Winter Stratospheric Polar Vortex in CMIP5/6 Models. Journal of Climate, 2020, 33, 4787-4813.	3.2	38
27	The Generic Nature of the Tropospheric Response to Sudden Stratospheric Warmings. Journal of Climate, 2020, 33, 5589-5610.	3.2	26
28	How Does the Quasi-Biennial Oscillation Affect the Boreal Winter Tropospheric Circulation in CMIP5/6 Models?. Journal of Climate, 2020, 33, 8975-8996.	3.2	32
29	Predictability of Stratospheric Sudden Warmings in the Beijing Climate Center Forecast System with Statistical Error Corrections. Journal of Geophysical Research D: Atmospheres, 2019, 124, 8385-8400.	3.3	21
30	The 2019 New Year Stratospheric Sudden Warming and Its Realâ€Time Predictions in Multiple S2S Models. Journal of Geophysical Research D: Atmospheres, 2019, 124, 11155-11174.	3.3	77
31	Modulation of the Northern Winter Stratospheric El Niño–Southern Oscillation Teleconnection by the PDO. Journal of Climate, 2019, 32, 5761-5783.	3.2	29
32	Statistical Characteristics of Major Sudden Stratospheric Warming Events in CESM1-WACCM: A Comparison with the JRA55 and NCEP/NCAR Reanalyses. Atmosphere, 2019, 10, 519.	2.3	29
33	Dynamical role of the Rocky Mountain controlled by East Asian topographies in modulating the tropospheric westerly jet in northern winter. Atmospheric and Oceanic Science Letters, 2019, 12, 66-72.	1.3	4
34	Combined Impact of El Niño–Southern Oscillation and Pacific Decadal Oscillation on the Northern Winter Stratosphere. Atmosphere, 2019, 10, 211.	2.3	19
35	Understanding the variation of stratosphere–troposphere coupling during stratospheric northern annular mode events from a mass circulation perspective. Climate Dynamics, 2019, 53, 5141-5164.	3.8	14
36	Sub-seasonal to Seasonal Hindcasts of Stratospheric Sudden Warming by BCC_CSM1.1(m): A Comparison with ECMWF. Advances in Atmospheric Sciences, 2019, 36, 479-494.	4.3	18

#	Article	IF	Citations
37	Linking quasi-biweekly variability of the South Asian high to atmospheric heating over Tibetan Plateau in summer. Climate Dynamics, 2019, 53, 3419-3429.	3.8	21
38	The Rossby wave train patterns forced by shallower and deeper Tibetan Plateau atmospheric heat-source in summer in a linear baroclinic model. Atmospheric and Oceanic Science Letters, 2019, 12, 35-40.	1.3	3
39	Sub-seasonal prediction skill for the stratospheric meridional mass circulation variability in CFSv2. Climate Dynamics, 2019, 53, 631-650.	3.8	8
40	Interdecadal Variations of the Midlatitude Ozone Valleys in Summer. Atmosphere, 2019, 10, 677.	2.3	5
41	Topographic Forcing from East Asia and North America in the Northern Winter Stratosphere and Their Mutual Interference. Journal of Climate, 2019, 32, 8639-8658.	3.2	11
42	Parallel Comparison of Major Sudden Stratospheric Warming Events in CESM1-WACCM and CESM2-WACCM. Atmosphere, 2019, 10, 679.	2.3	41
43	Evaluating the Brewer–Dobson circulation and its responses to ENSO, QBO, and the solar cycle in different reanalyses. Earth and Planetary Physics, 2019, 3, 1-16.	1.1	17
44	The salient differences in China summer rainfall response to ENSO: phases, intensities and flavors. Climate Research, 2019, 78, 51-67.	1.1	16
45	A closer look at the relationships between meridional mass circulation pulses in the stratosphere and cold air outbreak patterns in northern hemispheric winter. Climate Dynamics, 2018, 51, 3125-3143.	3.8	23
46	Recent strengthening of the stratospheric Arctic vortex response to warming in the central North Pacific. Nature Communications, 2018, 9, 1697.	12.8	86
47	Varying stratospheric responses to tropical Atlantic SST forcing from early to late winter. Climate Dynamics, 2018, 51, 2079-2096.	3.8	27
48	A stochastic model with a low-frequency amplification feedback for the stratospheric northern annular mode. Climate Dynamics, 2018, 50, 3757-3773.	3.8	12
49	The Stratospheric Sudden Warming Event in February 2018 and its Prediction by a Climate System Model. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,332.	3.3	66
50	Varying Rossby Wave Trains from the Developing to Decaying Period of the Upper Atmospheric Heat Source over the Tibetan Plateau in Boreal Summer. Advances in Atmospheric Sciences, 2018, 35, 1114-1128.	4.3	8
51	On the Linkage among Strong Stratospheric Mass Circulation, Stratospheric Sudden Warming, and Cold Weather Events. Monthly Weather Review, 2018, 146, 2717-2739.	1.4	24
52	Tracking the delayed response of the northern winter stratosphere to ENSO using multi reanalyses and model simulations. Climate Dynamics, 2017, 48, 2859-2879.	3.8	22
53	On the contrasting decadal changes of diurnal surface temperature range between the Tibetan Plateau and southeastern China during the 1980s–2000s. Advances in Atmospheric Sciences, 2017, 34, 181-198.	4.3	25
54	Onset of the Bay of Bengal summer monsoon and the seasonal timing of <scp>ENSO</scp> 's decay phase. International Journal of Climatology, 2017, 37, 4938-4948.	3.5	7

#	Article	IF	Citations
55	Parallel comparison of the 1982/83, 1997/98 and 2015/16 super El Ni $ ilde{A}\pm$ os and their effects on the extratropical stratosphere. Advances in Atmospheric Sciences, 2017, 34, 1121-1133.	4.3	37
56	Feeling the Pulse of the Stratosphere: An Emerging Opportunity for Predicting Continental-Scale Cold-Air Outbreaks 1 Month in Advance. Bulletin of the American Meteorological Society, 2016, 97, 1475-1489.	3.3	32
57	Asymmetry and nonlinearity of the influence of ENSO on the northern winter stratosphere: 2. Model study with WACCM. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9017-9032.	3.3	38
58	Asymmetry and nonlinearity of the influence of ENSO on the northern winter stratosphere: 1. Observations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9000-9016.	3.3	52
59	Summer SST anomalies in the Indian Ocean and the seasonal timing of ENSO decay phase. Climate Dynamics, 2016, 47, 1827-1844.	3.8	11
60	A decomposition of ENSO's impacts on the northern winter stratosphere: competing effect of SST forcing in the tropical Indian Ocean. Climate Dynamics, 2016, 46, 3689-3707.	3.8	43
61	Attributing analysis on the model bias in surface temperature in the climate system model FGOALS-s2 through a process-based decomposition method. Advances in Atmospheric Sciences, 2015, 32, 457-469.	4.3	18
62	Understanding the systematic air temperature biases in a coupled climate system model through a process-based decomposition method. Climate Dynamics, 2015, 45, 1801-1817.	3.8	8
63	Dynamic Linkage between Cold Air Outbreaks and Intensity Variations of the Meridional Mass Circulation. Journals of the Atmospheric Sciences, 2015, 72, 3214-3232.	1.7	48
64	Comparison of the mass circulation and AO indices as indicators of cold air outbreaks in northern winter. Geophysical Research Letters, 2015, 42, 2442-2448.	4.0	26
65	Seasonal timing of stratospheric final warming associated with the intensity of stratospheric sudden warming in preceding winter. Science China Earth Sciences, 2015, 58, 615-627.	5.2	12
66	Relationship between Warm Airmass Transport into the Upper Polar Atmosphere and Cold Air Outbreaks in Winter. Journals of the Atmospheric Sciences, 2015, 72, 349-368.	1.7	34
67	Parallel comparison of the northern winter stratospheric circulation in reanalysis and in CMIP5 models. Advances in Atmospheric Sciences, 2015, 32, 952-966.	4.3	29
68	Location and variation of the summertime upper-troposphere temperature maximum over South Asia. Climate Dynamics, 2015, 45, 2757-2774.	3.8	70
69	Occurrence of Winter Stratospheric Sudden Warming Events and the Seasonal Timing of Spring Stratospheric Final Warming. Journals of the Atmospheric Sciences, 2014, 71, 2319-2334.	1.7	93
70	Progress in research of stratosphere-troposphere interactions: Application of isentropic potential vorticity dynamics and the effects of the Tibetan Plateau. Journal of Meteorological Research, 2014, 28, 714-731.	2.4	8
71	A Mass Budget Analysis on the Interannual Variability of the Polar Surface Pressure in the Winter Season. Journals of the Atmospheric Sciences, 2014, 71, 3539-3553.	1.7	21
72	The boreal spring stratospheric final warming and its interannual and interdecadal variability. Science China Earth Sciences, 2014, 57, 710-718.	5.2	13

#	Article	IF	CITATIONS
73	An emerging precursor signal in the stratosphere in recent decades for the Indian summer monsoon onset. Geophysical Research Letters, 2014, 41, 7391-7396.	4.0	12
74	Changes in winter stratospheric circulation in CMIP5 scenarios simulated by the climate system model FGOALS-s2. Advances in Atmospheric Sciences, 2012, 29, 1374-1389.	4.3	10
75	Spatial Pattern and Zonal Shift of the North Atlantic Oscillation. Part II: Numerical Experiments. Journals of the Atmospheric Sciences, 2010, 67, 2827-2853.	1.7	12
76	Spatial Pattern and Zonal Shift of the North Atlantic Oscillation. Part I: A Dynamical Interpretation. Journals of the Atmospheric Sciences, 2010, 67, 2805-2826.	1.7	22
77	Winter season stratospheric circulation in the SAMIL/LASG general circulation model. Advances in Atmospheric Sciences, 2009, 26, 451-464.	4.3	10
78	Polar vortex oscillation viewed in an isentropic potential vorticity coordinate. Advances in Atmospheric Sciences, 2006, 23, 884-900.	4.3	17
79	Statistical Characteristics of ENSO Events in CMIP5 Models. , 0, .		3
80	Tropopause folding events to the northeast of Tibetan Plateau in boreal summer and their remote relation to the circulation anomalies over northeastern Atlantic. Climate Dynamics, 0, , 1.	3.8	1