
Matthew J Wolf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1439242/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In Vivo Methods to Monitor Cardiomyocyte Proliferation. Journal of Cardiovascular Development and Disease, 2022, 9, 73.	1.6	2
2	Inhibition of DYRK1a Enhances Cardiomyocyte Cycling After Myocardial Infarction. Circulation Research, 2022, 130, 1345-1361.	4.5	12
3	Loss of Endogenously Cycling Adult Cardiomyocytes Worsens Myocardial Function. Circulation Research, 2021, 128, 155-168.	4.5	17
4	Endothelial Pannexin 1 Regulates Cardiac Response to Myocardial Infarction. Circulation Research, 2021, 128, 1211-1213.	4.5	14
5	Mitochondria-localized AMPK responds to local energetics and contributes to exercise and energetic stress-induced mitophagy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	75
6	Abstract P397: <i>MTCH2</i> As A Modifier Of Cardiomyopathy. Circulation Research, 2021, 129, .	4.5	0
7	Suppression of store-operated calcium entry causes dilated cardiomyopathy of the <i>Drosophila</i> heart. Biology Open, 2020, 9, .	1.2	11
8	Abstract 261: Evaluating MTCH2 as a Modifier of Cardiomyopathy. Circulation Research, 2020, 127, .	4.5	0
9	High-content phenotypic assay for proliferation of human iPSC-derived cardiomyocytes identifies L-type calcium channels as targets. Journal of Molecular and Cellular Cardiology, 2019, 127, 204-214.	1.9	20
10	Abstract 351: Suppression of Store Operated Ca 2+ Entry Components, dStim and dOrai, Results in Dilated Cardiomyopathy. Circulation Research, 2019, 125, .	4.5	0
11	"HETEâ€ing up mitochondria in human heart failure. Journal of Biological Chemistry, 2018, 293, 130-131.	3.4	2
12	The two-pore domain potassium channel TREK-1 mediates cardiac fibrosis and diastolic dysfunction. Journal of Clinical Investigation, 2018, 128, 4843-4855.	8.2	62
13	SPARCling Study of a Drosophila Cardiomyopathy. Circulation: Cardiovascular Genetics, 2016, 9, 104-106.	5.1	1
14	Complexities of Genetic Testing in Familial Dilated Cardiomyopathy. Circulation: Cardiovascular Genetics, 2016, 9, 95-99.	5.1	6
15	Cardiac hypertrophy induced by active Raf depends on Yorkie-mediated transcription. Science Signaling, 2015, 8, ra13.	3.6	24
16	Obesity-associated cardiac dysfunction in starvation-selected <i>Drosophila melanogaster</i> . American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R658-R667.	1.8	22
17	Reengineering a transmembrane protein to treat muscular dystrophy using exon skipping. Journal of Clinical Investigation, 2015, 125, 4186-4195.	8.2	29
18	Galactokinase Is a Novel Modifier of Calcineurin-Induced Cardiomyopathy in <i>Drosophila</i> . Genetics, 2014, 198, 591-603.	2.9	10

MATTHEW J WOLF

#	Article	IF	CITATIONS
19	Abstract 14688: TREK-1 Modulates Fibrosis & Diastolic Dysfunction Through Activation of Stress-Activated Kinases. Circulation, 2014, 130, .	1.6	0
20	Towards Understanding the Impact of Sarcomeric Gene Mutations â^—. JACC: Heart Failure, 2013, 1, 467-468.	4.1	0
21	Raf-mediated cardiac hypertrophy in adult <i>Drosophila</i> . DMM Disease Models and Mechanisms, 2013, 6, 964-76.	2.4	31
22	Disruption of Sarcoendoplasmic Reticulum Calcium ATPase Function in Drosophila Leads to Cardiac Dysfunction. PLoS ONE, 2013, 8, e77785.	2.5	12
23	Modeling Dilated Cardiomyopathies in Drosophila. Trends in Cardiovascular Medicine, 2012, 22, 55-61.	4.9	14
24	Deletion of Siah-interacting protein gene in Drosophila causes cardiomyopathy. Molecular Genetics and Genomics, 2012, 287, 351-360.	2.1	3
25	SMAD signaling drives heart and muscle dysfunction in a Drosophila model of muscular dystrophy. Human Molecular Genetics, 2011, 20, 894-904.	2.9	35
26	Drosophila, Genetic Screens, and Cardiac Function. Circulation Research, 2011, 109, 794-806.	4.5	51
27	A Method to Measure Myocardial Calcium Handling in Adult Drosophila. Circulation Research, 2011, 108, 1306-1315.	4.5	36
28	Cardiomyopathy Is Associated with Ribosomal Protein Gene Haplo-Insufficiency in <i>Drosophila melanogaster</i> . Genetics, 2011, 189, 861-870.	2.9	23
29	Gene Deletion Screen for Cardiomyopathy in Adult Drosophila Identifies a New Notch Ligand. Circulation Research, 2010, 106, 1233-1243.	4.5	43
30	Affecting Rhomboid-3 Function Causes a Dilated Heart in Adult Drosophila. PLoS Genetics, 2010, 6, e1000969.	3.5	27
31	Serial Examination of an Inducible and Reversible Dilated Cardiomyopathy in Individual Adult Drosophila. PLoS ONE, 2009, 4, e7132.	2.5	14
32	β ₁ -Adrenergic receptors stimulate cardiac contractility and CaMKII activation in vivo and enhance cardiac dysfunction following myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1377-H1386.	3.2	85
33	Drosophila melanogaster as a model system for the genetics of postnatal cardiac function. Drug Discovery Today: Disease Models, 2008, 5, 117-123.	1.2	31
34	Reduced life span with heart and muscle dysfunction in Drosophila sarcoglycan mutants. Human Molecular Genetics, 2007, 16, 2933-2943.	2.9	61
35	Methods for the Detection of Altered β-Adrenergic Receptor Signaling Pathways in Hypertrophied Hearts. , 2005, 112, 353-362.		4