Emily C Farrer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1438938/publications.pdf

Version: 2024-02-01

394421 330143 1,513 38 19 37 citations g-index h-index papers 39 39 39 2442 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology, 2013, 94, 1687-1696.	3.2	191
2	Biotic mechanisms of community stability shift along a precipitation gradient. Ecology, 2014, 95, 1693-1700.	3.2	161
3	Litter drives ecosystem and plant community changes in cattail invasion. Ecological Applications, 2009, 19, 398-412.	3.8	127
4	Plant diversity and density predict belowground diversity and function in an early successional alpine ecosystem. Ecology, 2018, 99, 1942-1952.	3.2	83
5	Teasing apart plant community responses to N enrichment: the roles of resource limitation, competition and soil microbes. Ecology Letters, 2016, 19, 1287-1296.	6.4	81
6	Neotropical rainforest restoration: comparing passive, plantation and nucleation approaches. Biodiversity and Conservation, 2016, 25, 2021-2034.	2.6	75
7	Lagging behind: have we overlooked previousâ€ y ear rainfall effects in annual grasslands?. Journal of Ecology, 2017, 105, 484-495.	4.0	72
8	Nitrogen deposition alters plant–fungal relationships: linking belowground dynamics to aboveground vegetation change. Molecular Ecology, 2014, 23, 1364-1378.	3.9	65
9	Patterns of root colonization by arbuscular mycorrhizal fungi and dark septate endophytes across a mostly-unvegetated, high-elevation landscape. Fungal Ecology, 2018, 36, 63-74.	1.6	55
10	Co-Occurrence Patterns of Plants and Soil Bacteria in the High-Alpine Subnival Zone Track Environmental Harshness. Frontiers in Microbiology, 2012, 3, 347.	3.5	54
11	Shrub Expansion Over the Past 62 Years in Rocky Mountain Alpine Tundra: Possible Causes and Consequences. Arctic, Antarctic, and Alpine Research, 2014, 46, 616-631.	1.1	54
12	Nitrogen deposition, plant carbon allocation, and soil microbes: Changing interactions due to enrichment. American Journal of Botany, 2013, 100, 1458-1470.	1.7	42
13	Vegetation change at high elevation: scale dependence and interactive effects on Niwot Ridge. Plant Ecology and Diversity, 2015, 8, 713-725.	2.4	40
14	Indirect effects of global change accumulate to alter plant diversity but not ecosystem function in alpine tundra. Journal of Ecology, 2015, 103, 351-360.	4.0	32
15	Plant colonization of moss-dominated soils in the alpine: Microbial and biogeochemical implications. Soil Biology and Biochemistry, 2017, 111, 135-142.	8.8	32
16	Emergence of nutrient-cycling feedbacks related to plant size and invasion success in a wetland community–ecosystem model. Ecological Modelling, 2014, 282, 69-82.	2.5	27
17	Incorporating biotic factors in species distribution modeling: are interactions with soil microbes important?. Ecography, 2016, 39, 970-980.	4.5	25
18	Positive litter feedbacks of an introduced species reduce native diversity and promote invasion in Californian grasslands. Applied Vegetation Science, 2017, 20, 28-39.	1.9	22

#	Article	IF	CITATIONS
19	Time Lags and the Balance of Positive and Negative Interactions in Driving Grassland Community Dynamics. American Naturalist, 2010, 175, 160-173.	2.1	21
20	Assembly of rootâ€associated bacteria communities: interactions between abiotic and biotic factors. Environmental Microbiology Reports, 2015, 7, 102-110.	2.4	20
21	Patterns and mechanisms of conspecific and heterospecific interactions in a dry perennial grassland. Journal of Ecology, 2011, 99, 265-276.	4.0	19
22	Seed-associated fungi in the alpine tundra: Both mutualists and pathogens could impact plant recruitment. Fungal Ecology, 2017, 30, 10-18.	1.6	18
23	Separating direct and indirect effects of global change: a population dynamic modeling approach using readily available field data. Global Change Biology, 2014, 20, 1238-1250.	9.5	17
24	Fire Effects on Soil Biogeochemistry in Florida Scrubby Flatwoods. American Midland Naturalist, 2015, 174, 49-64.	0.4	16
25	Tradeoffs in demographic mechanisms underlie differences in species abundance and stability. Nature Communications, 2018, 9, 5047.	12.8	16
26	Mechanisms and reversibility of the effects of hybrid cattail on a Great Lakes marsh. Aquatic Botany, 2014, 116, 35-43.	1.6	15
27	Plant–microbe interactions at multiple scales across a high-elevation landscape. Plant Ecology and Diversity, 2015, 8, 703-712.	2.4	15
28	Soil Microbial Networks Shift Across a High-Elevation Successional Gradient. Frontiers in Microbiology, 2019, 10, 2887.	3.5	14
29	Taking climate change into account: Nonâ€stationarity in climate drivers of ecological response. Journal of Ecology, 2021, 109, 1491-1500.	4.0	12
30	Plant and microbial impacts of an invasive species vary across an environmental gradient. Journal of Ecology, 2021, 109, 2163-2176.	4.0	12
31	Plant-Microbial Symbioses in Coastal Systems: Their Ecological Importance and Role in Coastal Restoration. Estuaries and Coasts, 2022, 45, 1805-1822.	2.2	12
32	Nematode community diversity and function across an alpine landscape undergoing plant colonization of previously unvegetated soils. Soil Biology and Biochemistry, 2021, 161, 108380.	8.8	11
33	Evidence for phosphorus limitation in high-elevation unvegetated soils, Niwot Ridge, Colorado. Biogeochemistry, 2020, 147, 1-13.	3. 5	9
34	Separating sources of densityâ€dependent and densityâ€independent establishment limitation in invading species. Journal of Ecology, 2017, 105, 436-444.	4.0	8
35	Phragmites australis Associates with Belowground Fungal Communities Characterized by High Diversity and Pathogen Abundance. Diversity, 2020, 12, 363.	1.7	8
36	Direct and Indirect Effects of Climate Change in Coastal Wetlands: Will Climate Change Influence Wetlands by Affecting Plant Invasion?. Wetlands, 2021, 41, 1.	1.5	7

#	Article	lF	CITATIONS
37	Does salinity affect lifestyle switching in the plant pathogen Fusarium solani?. Access Microbiology, 2020, 2, acmi000114.	0.5	5
38	Nipponaclerda Biwakoensis Infestation of Phragmites australis in the Mississippi River Delta, USA: Do Fungal Microbiomes Play a Role?. Wetlands, 2022, 42, 1.	1.5	2