Ikram Blilou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1438685/publications.pdf

Version: 2024-02-01

60 papers 10,501 citations

35 h-index 60 g-index

68 all docs 68
docs citations

68 times ranked 8158 citing authors

#	Article	IF	CITATIONS
1	Cell-to-Cell Communication During Plant-Pathogen Interaction. Molecular Plant-Microbe Interactions, 2022, 35, 98-108.	2.6	7
2	MultipleXLab: A high-throughput portable live-imaging root phenotyping platform using deep learning and computer vision. Plant Methods, 2022, 18, 38.	4.3	10
3	A PLETHORA/PIN-FORMED/auxin network mediates prehaustorium formation in the parasitic plant <i>Striga hermonthica</i> . Plant Physiology, 2022, 189, 2281-2297.	4.8	7
4	Analysis of the Arabidopsis <i>coilin</i> mutant reveals a positive role of AtCOILIN in plant immunity. Plant Physiology, 2022, 190, 745-761.	4.8	6
5	Minimally-invasive, real-time, non-destructive, species-independent phytohormone biosensor for precision farming. Biosensors and Bioelectronics, 2022, 214, 114515.	10.1	20
6	A Semi-In Vivo Transcriptional Assay to Dissect Plant Defense Regulatory Modules. Methods in Molecular Biology, 2021, 2328, 203-214.	0.9	4
7	Isoâ€anchorene is an endogenous metabolite that inhibits primary root growth in Arabidopsis. Plant Journal, 2021, 107, 54-66.	5.7	16
8	A type dependent effect of treated wastewater matrix on seed germination and food production. Science of the Total Environment, 2021, 769, 144573.	8.0	12
9	Rooting in the Desert: A Developmental Overview on Desert Plants. Genes, 2021, 12, 709.	2.4	26
10	Robust, Longâ€∓erm, and Exceptionally Sensitive Microneedleâ€Based Bioimpedance Sensor for Precision Farming. Advanced Science, 2021, 8, e2101261.	11.2	14
11	Multi-omics approaches explain the growth-promoting effect of the apocarotenoid growth regulator zaxinone in rice. Communications Biology, 2021, 4, 1222.	4.4	18
12	Moving with purpose and direction: transcription factor movement and cell fate determination revisited. Current Opinion in Plant Biology, 2020, 57, 124-132.	7.1	15
13	Development and Cell Cycle Activity of the Root Apical Meristem in the Fern Ceratopteris richardii. Genes, 2020, 11, 1455.	2.4	6
14	Novel Imaging Modalities Shedding Light on Plant Biology: Start Small and Grow Big. Annual Review of Plant Biology, 2020, 71, 789-816.	18.7	22
15	Visualizing Protein Associations in Living Arabidopsis Embryo. Methods in Molecular Biology, 2020, 2122, 167-188.	0.9	2
16	Orthologous receptor kinases quantitatively affect the host status of barley to leaf rust fungi. Nature Plants, 2019, 5, 1129-1135.	9.3	37
17	INDETERMINATE-DOMAIN 4 (IDD4) coordinates immune responses with plant-growth in Arabidopsis thaliana. PLoS Pathogens, 2019, 15, e1007499.	4.7	17
18	Emergent Protective Organogenesis in Date Palms: A Morpho-Devo-Dynamic Adaptive Strategy during Early Development. Plant Cell, 2019, 31, 1751-1766.	6.6	24

#	Article	IF	CITATIONS
19	A Jasmonate Signaling Network Activates Root Stem Cells and Promotes Regeneration. Cell, 2019, 177, 942-956.e14.	28.9	233
20	The apocarotenoid metabolite zaxinone regulates growth and strigolactone biosynthesis in rice. Nature Communications, 2019, 10, 810.	12.8	113
21	Anchorene is a carotenoid-derived regulatory metabolite required for anchor root formation in <i>Arabidopsis</i> . Science Advances, 2019, 5, eaaw6787.	10.3	67
22	Transcription Factor-Mediated Control of Anthocyanin Biosynthesis in Vegetative Tissues. Plant Physiology, 2018, 176, 1862-1878.	4.8	41
23	Role of Tulipa gesneriana TEOSINTE BRANCHED1 (TgTB1) in the control of axillary bud outgrowth in bulbs. Plant Reproduction, 2018, 31, 145-157.	2.2	17
24	The Arabidopsis DWARF27 gene encodes an all-trans- $/9$ -cis- \hat{l}^2 -carotene isomerase and is induced by auxin, abscisic acid and phosphate deficiency. Plant Science, 2018, 277, 33-42.	3.6	59
25	Optimizing FRET-FLIM Labeling Conditions to Detect Nuclear Protein Interactions at Native Expression Levels in Living Arabidopsis Roots. Frontiers in Plant Science, 2018, 9, 639.	3.6	21
26	Root stem cell niche organizer specification by molecular convergence of PLETHORA and SCARECROW transcription factor modules. Genes and Development, 2018, 32, 1085-1100.	5.9	100
27	A computational framework for cortical microtubule dynamics in realistically shaped plant cells. PLoS Computational Biology, 2018, 14, e1005959.	3.2	39
28	The <i>Arabidopsis</i> homolog of human G3BP1 is a key regulator of stomatal and apoplastic immunity. Life Science Alliance, 2018, 1, e201800046.	2.8	16
29	Analysis of a Plant Transcriptional Regulatory Network Using Transient Expression Systems. Methods in Molecular Biology, 2017, 1629, 83-103.	0.9	8
30	<i>Arabidopsis</i> RETINOBLASTOMA RELATED directly regulates DNA damage responses through functions beyond cell cycle control. EMBO Journal, 2017, 36, 1261-1278.	7.8	83
31	In vivo FRET–FLIM reveals cell-type-specific protein interactions in Arabidopsis roots. Nature, 2017, 548, 97-102.	27.8	128
32	Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy. ELife, 2016, 5, .	6.0	79
33	Oasis desert farming selects environmentâ€specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought. Environmental Microbiology Reports, 2015, 7, 668-678.	2.4	122
34	<pre><scp>SCARECROW</scp>â€<scp>LIKE</scp>23 and <scp>SCARECROW</scp> jointly specify endodermal cell fate but distinctly control <scp>SHORT</scp>â€<scp>ROOT</scp> movement. Plant Journal, 2015, 84, 773-784.</pre>	5.7	52
35	The logic of communication: roles for mobile transcription factors in plants. Journal of Experimental Botany, 2015, 66, 1133-1144.	4.8	19
36	A plant U-box protein, PUB4, regulates asymmetric cell division and cell proliferation in the root meristem. Development (Cambridge), 2015, 142, 444-453.	2.5	61

#	Article	IF	CITATIONS
37	Arabidopsis BIRD Zinc Finger Proteins Jointly Stabilize Tissue Boundaries by Confining the Cell Fate Regulator SHORT-ROOT and Contributing to Fate Specification. Plant Cell, 2015, 27, 1185-1199.	6.6	121
38	Transcriptional control of tissue formation throughout root development. Science, 2015, 350, 426-430.	12.6	128
39	A SCARECROW-RETINOBLASTOMA Protein Network Controls Protective Quiescence in the Arabidopsis Root Stem Cell Organizer. PLoS Biology, 2013, 11, e1001724.	5.6	137
40	Unraveling Root Developmental Programs Initiated by Beneficial <i>Pseudomonas</i> spp. Bacteria Â. Plant Physiology, 2013, 162, 304-318.	4.8	288
41	A Bistable Circuit Involving SCARECROW-RETINOBLASTOMA Integrates Cues to Inform Asymmetric Stem Cell Division. Cell, 2012, 150, 1002-1015.	28.9	273
42	COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1- and PIN2-dependent auxin transport in <i>Arabidopsis</i> Development (Cambridge), 2012, 139, 3402-3412.	2.5	167
43	Arabidopsis PLETHORA Transcription Factors Control Phyllotaxis. Current Biology, 2011, 21, 1123-1128.	3.9	124
44	JACKDAW controls epidermal patterning in the <i>Arabidopsis</i> root meristem through a non-cell-autonomous mechanism. Development (Cambridge), 2010, 137, 1523-1529.	2.5	119
45	Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature, 2008, 456, 962-966.	27.8	228
46	<i>Arabidopsis</i> JACKDAW and MAGPIE zinc finger proteins delimit asymmetric cell division and stabilize tissue boundaries by restricting SHORT-ROOT action. Genes and Development, 2007, 21, 2196-2204.	5.9	245
47	An Evolutionarily Conserved Mechanism Delimiting SHR Movement Defines a Single Layer of Endodermis in Plants. Science, 2007, 316, 421-425.	12.6	522
48	PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature, 2007, 449, 1053-1057.	27.8	743
49	In situ hybridization technique for mRNA detection in whole mount Arabidopsis samples. Nature Protocols, 2006, 1, 1939-1946.	12.0	141
50	Polar PIN Localization Directs Auxin Flow in Plants. Science, 2006, 312, 883-883.	12.6	754
51	Whole-Genome Analysis of the SHORT-ROOT Developmental Pathway in Arabidopsis. PLoS Biology, 2006, 4, e143.	5.6	283
52	The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature, 2005, 433, 39-44.	27.8	1,789
53	The RETINOBLASTOMA-RELATED Gene Regulates Stem Cell Maintenance in Arabidopsis Roots. Cell, 2005, 123, 1337-1349.	28.9	336
54	The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends in Plant Science, 2005, 10, 170-177.	8.8	383

#	Article	IF	CITATION
55	The PLETHORA Genes Mediate Patterning of the Arabidopsis Root Stem Cell Niche. Cell, 2004, 119, 109-120.	28.9	1,022
56	The Arabidopsis HOBBIT gene encodes a CDC27 homolog that links the plant cell cycle to progression of cell differentiation. Genes and Development, 2002, 16, 2566-2575.	5.9	166
57	AtPIN4 Mediates Sink-Driven Auxin Gradients and Root Patterning in Arabidopsis. Cell, 2002, 108, 661-673.	28.9	763
58	Induction of catalase and ascorbate peroxidase activities in tobacco roots inoculated with the arbuscular mycorrhizal Glomus mosseae. Mycological Research, 2000, 104, 722-725.	2.5	91
59	Induction of Ltp (lipid transfer protein) and Pal (phenylalanine ammoniaâ€lyase) gene expression in rice roots colonized by the arbuscular mycorrhizal fungus Glomus mosseae. Journal of Experimental Botany, 2000, 51, 1969-1977.	4.8	142
60	Evaluation of the Biostimulant Activity of Zaxinone Mimics (MiZax) in Crop Plants. Frontiers in Plant Science, 0, 13, .	3.6	5