Stanislav Musil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1438524/publications.pdf

Version: 2024-02-01

394421 454955 1,010 46 19 30 citations h-index g-index papers 47 47 47 592 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Speciation without Chromatography Using Selective Hydride Generation: Inorganic Arsenic in Rice and Samples of Marine Origin. Analytical Chemistry, 2014, 86, 993-999.	6.5	95
2	Efficient Photochemical Vapor Generation of Molybdenum for ICPMS Detection. Analytical Chemistry, 2018, 90, 11688-11695.	6. 5	52
3	Speciation Analysis of Arsenic by Selective Hydride Generation-Cryotrapping-Atomic Fluorescence Spectrometry with Flame-in-Gas-Shield Atomizer: Achieving Extremely Low Detection Limits with Inexpensive Instrumentation. Analytical Chemistry, 2014, 86, 10422-10428.	6. 5	50
4	Selective hydride generation-cryotrapping-ICP-MS for arsenic speciation analysis at picogram levels: analysis of river and sea water reference materials and human bladder epithelial cells. Journal of Analytical Atomic Spectrometry, 2013, 28, 1456.	3.0	47
5	Cadmium Assisted Photochemical Vapor Generation of Tungsten for Detection by Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2019, 91, 13306-13312.	6.5	47
6	Direct Speciation Analysis of Arsenic in Whole Blood and Blood Plasma at Low Exposure Levels by Hydride Generation-Cryotrapping-Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2017, 89, 9633-9637.	6.5	39
7	Gold volatile compound generation: optimization, efficiency and characterization of the generated form. Journal of Analytical Atomic Spectrometry, 2011, 26, 828-837.	3.0	37
8	Hydride generation ICP-MS as a simple method for determination of inorganic arsenic in rice for routine biomonitoring. Analytical Methods, 2014, 6, 5392-5396.	2.7	37
9	On-line pre-reduction of pentavalent arsenicals by thioglycolic acid for speciation analysis by selective hydride generation–cryotrapping–atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 685-691.	2.9	35
10	Silver chemical vapor generation for atomic absorption spectrometry: minimization of transport losses, interferences and application to water analysis. Journal of Analytical Atomic Spectrometry, 2010, 25, 1618.	3.0	35
11	Chemical vapor generation of silver for atomic absorption spectrometry with the multiatomizer: Radiotracer efficiency study and characterization of silver species. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 1240-1247.	2.9	34
12	Loss of di- and trimethylarsine on Nafion membrane dryers following hydride generation. Journal of Analytical Atomic Spectrometry, 2011, 26, 220-223.	3.0	28
13	Achieving 100% Efficient Postcolumn Hydride Generation for As Speciation Analysis by Atomic Fluorescence Spectrometry. Analytical Chemistry, 2016, 88, 4041-4047.	6. 5	28
14	Diethyldithiocarbamate enhanced chemical generation of volatile palladium species, their characterization by AAS, ICP-MS, TEM and DART-MS and proposed mechanism of action. Analytica Chimica Acta, 2018, 1005, 16-26.	5.4	28
15	Validation and inter-laboratory study of selective hydride generation for fast screening of inorganic arsenic in seafood. Analytica Chimica Acta, 2019, 1049, 20-28.	5.4	24
16	Hydride generation – in-atomizer collection of Pb in quartz tube atomizers for atomic absorption spectrometry – a 212Pb radiotracer study. Journal of Analytical Atomic Spectrometry, 2013, 28, 344.	3.0	23
17	UV photochemical vapor generation of Cd from a formic acid based medium: optimization, efficiency and interferences. Journal of Analytical Atomic Spectrometry, 2020, 35, 1380-1388.	3.0	23
18	Sample preparation for arsenic speciation analysis in baby food by generation of substituted arsines with atomic absorption spectrometry detection. Talanta, 2017, 175, 406-412.	5.5	22

#	Article	IF	CITATIONS
19	UV-photochemical vapor generation of selenium for atomic absorption spectrometry: Optimization and 75Se radiotracer efficiency study. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2016, 123, 134-142.	2.9	20
20	Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2015, 109, 16-23.	2.9	19
21	Behavior of selenium hydride in heated quartz tube and dielectric barrier discharge atomizers. Analytica Chimica Acta, 2018, 1028, 11-21.	5.4	19
22	Efficient photochemical vapor generation of bismuth using a coiled Teflon reactor: Effect of metal sensitizers and analytical performance with flame-in-gas-shield atomizer and atomic fluorescence spectrometry. Microchemical Journal, 2021, 164, 105997.	4.5	18
23	Ultrasensitive Detection of Ruthenium by Coupling Cobalt and Cadmium Ion-Assisted Photochemical Vapor Generation to Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2021, 93, 16543-16551.	6.5	18
24	Demethylation of Methylated Arsenic Species during Generation of Arsanes with Tetrahydridoborate(1a^^) in Acidic Media. Analytical Chemistry, 2016, 88, 6366-6373.	6.5	17
25	Ultra-sensitive speciation analysis of tellurium by manganese and iron assisted photochemical vapor generation coupled to ICP-MS/MS. Analytica Chimica Acta, 2022, 1201, 339634.	5 . 4	17
26	Chemical generation of volatile species of copper $\hat{a}\in$ Optimization, efficiency and investigation of volatile species nature. Analytica Chimica Acta, 2017, 977, 10-19.	5 . 4	16
27	In situ collection of volatile silver species in a new modular quartz tube atomizer for atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 2012, 27, 1382.	3.0	15
28	Investigation of hydride generation from arsenosugars - Is it feasible for speciation analysis?. Analytica Chimica Acta, 2018, 1008, 8-17.	5 . 4	15
29	Feasibility of <i>in situ</i> trapping of selenium hydride in a DBD atomizer for ultrasensitive Se determination by atomic absorption spectrometry studied with a ⁷⁵ Se radioactive indicator. Journal of Analytical Atomic Spectrometry, 2019, 34, 193-202.	3.0	15
30	Generation of tellurium hydride and its atomization in a dielectric barrier discharge for atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 171, 105947.	2.9	15
31	Longitudinally monitored lifetime changes in blood heavy metal concentrations and their health effects in urban birds. Science of the Total Environment, 2020, 723, 138002.	8.0	15
32	Na+/K+-ATPase and lipid peroxidation in forebrain cortex and hippocampus of sleep-deprived rats treated with therapeutic lithium concentration for different periods of time. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 102, 109953.	4.8	14
33	Atomic fluorescence spectrometry for ultrasensitive determination of bismuth based on hydride generation $\hat{a} \in \text{``}$ the role of excitation source, interference filter and flame atomizers. Journal of Analytical Atomic Spectrometry, 2020, 35, 993-1002.	3.0	12
34	Detailed evaluation of conditions of photochemical vapor generation for sensitive determination of nickel in water samples by ICP-MS detection. Microchemical Journal, 2022, 172, 106963.	4.5	10
35	GC-MS exploration of photochemically generated species of Os, W and Ru from reductive and oxidative media. Journal of Analytical Atomic Spectrometry, 2022, 37, 528-534.	3.0	10
36	A sapphire tube atomizer for on-line atomization and in situ collection of bismuthine for atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 2013, 28, 593.	3.0	9

3

#	Article	IF	CITATIONS
37	Gold volatile species atomization and preconcentration in quartz devices for atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2015, 103-104, 155-163.	2.9	9
38	Modular design of a trap-and-atomizer device with a gold absorber for selenium collection after hydride generation. Journal of Analytical Atomic Spectrometry, 2020, 35, 107-116.	3.0	9
39	Effect of additives on cadmium chemical vapor generation and reliable quantification of generation efficiency. Analytica Chimica Acta, 2021, 1168, 338601.	5.4	9
40	Selenium preconcentration in a gold "amalgamator―after hydride generation for atomic spectrometry. Journal of Analytical Atomic Spectrometry, 2020, 35, 2132-2141.	3.0	8
41	Sapphire: a better material for atomization and in situ collection of silver volatile species for atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2015, 108, 61-67.	2.9	5
42	Induction of oxidative stress by long-term treatment of live HEK293 cells with therapeutic concentration of lithium is associated with down-regulation of $\hat{\Gamma}$ -opioid receptor amount and function. Biochemical Pharmacology, 2018, 154, 452-463.	4.4	5
43	Na+/K+-ATPase level and products of lipid peroxidation in live cells treated with therapeutic lithium for different periods in time (1, 7, and 28Adays); studies of Jurkat and HEK293 cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 2019, 392, 785-799.	3.0	4
44	Chemical vapor generation of transition and noble metals. , 2022, , 91-128.		2
45	A mass spectrometric study of hydride generated arsenic species identified by direct analysis in real time (DART) following cryotrapping. Analytical and Bioanalytical Chemistry, 2021, 413, 3443-3453.	3.7	1
46	Natural or intended mummification? Specific case of a child mummy. Anthropologischer Anzeiger, 2021, 78, 219-236.	0.4	0