
Zidong Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1438007/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chemical Society Reviews, 2015, 44, 2168-2201.	38.1	1,858
2	Understanding the High Activity of Fe–N–C Electrocatalysts in Oxygen Reduction: Fe/Fe ₃ C Nanoparticles Boost the Activity of Fe–N _{<i>x</i>} . Journal of the American Chemical Society, 2016, 138, 3570-3578.	13.7	1,549
3	Spaceâ€Confinementâ€Induced Synthesis of Pyridinic―and Pyrrolicâ€Nitrogenâ€Doped Graphene for the Catalysis of Oxygen Reduction. Angewandte Chemie - International Edition, 2013, 52, 11755-11759.	13.8	620
4	Nitrogen and Phosphorus Dual-Doped Graphene/Carbon Nanosheets as Bifunctional Electrocatalysts for Oxygen Reduction and Evolution. ACS Catalysis, 2015, 5, 4133-4142.	11.2	620
5	Ultrahighâ€Loading Zinc Singleâ€Atom Catalyst for Highly Efficient Oxygen Reduction in Both Acidic and Alkaline Media. Angewandte Chemie - International Edition, 2019, 58, 7035-7039.	13.8	469
6	Nanostructured Polyaniline-Decorated Pt/C@PANI Core–Shell Catalyst with Enhanced Durability and Activity. Journal of the American Chemical Society, 2012, 134, 13252-13255.	13.7	430
7	Phosphorus-doped graphene nanosheets as efficient metal-free oxygen reduction electrocatalysts. RSC Advances, 2013, 3, 9978.	3.6	365
8	Shape Fixing via Salt Recrystallization: A Morphology-Controlled Approach To Convert Nanostructured Polymer to Carbon Nanomaterial as a Highly Active Catalyst for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2015, 137, 5414-5420.	13.7	364
9	A Review of Water Management in Polymer Electrolyte Membrane Fuel Cells. Energies, 2009, 2, 1057-1106.	3.1	287
10	An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X = OH, F) nanosheets for oxygen reduction reaction. Chemical Communications, 2013, 49, 10112.	4.1	284
11	Bimetallic PdPt nanowire networks with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation. Energy and Environmental Science, 2015, 8, 2910-2915.	30.8	283
12	Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction. Nature Catalysis, 2020, 3, 454-462.	34.4	282
13	Transition-metal-oxide-based catalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 8194-8209.	10.3	259
14	Ni-doped Mo ₂ C nanowires supported on Ni foam as a binder-free electrode for enhancing the hydrogen evolution performance. Journal of Materials Chemistry A, 2015, 3, 1863-1867.	10.3	234
15	Surface Al leached Ti ₃ AlC ₂ as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system. Nanoscale, 2014, 6, 11035-11040.	5.6	231
16	Embedding Pt Nanocrystals in N-Doped Porous Carbon/Carbon Nanotubes toward Highly Stable Electrocatalysts for the Oxygen Reduction Reaction. ACS Catalysis, 2015, 5, 2903-2909.	11.2	221
17	Porous metal materials for polymer electrolyte membrane fuel cells – A review. Applied Energy, 2012, 94, 309-329.	10.1	215
18	Recent developments in metal phosphide and sulfide electrocatalysts for oxygen evolution reaction. Chinese Journal of Catalysis, 2018, 39, 1575-1593.	14.0	205

#	Article	IF	CITATIONS
19	Nitrogen-coordinated single iron atom catalysts derived from metal organic frameworks for oxygen reduction reaction. Nano Energy, 2019, 61, 60-68.	16.0	192
20	A one-step, cost-effective green method to in situ fabricate Ni(OH) ₂ hexagonal platelets on Ni foam as binder-free supercapacitor electrode materials. Journal of Materials Chemistry A, 2015, 3, 1953-1960.	10.3	179
21	Facile Synthesis of Highly Active PdAu Nanowire Networks as Self-Supported Electrocatalyst for Ethanol Electrooxidation. ACS Applied Materials & amp; Interfaces, 2014, 6, 9481-9487.	8.0	162
22	Atomically dispersed Pt and Fe sites and Pt–Fe nanoparticles for durable proton exchange membrane fuel cells. Nature Catalysis, 2022, 5, 503-512.	34.4	155
23	Enhanced stability of Pt nanoparticle electrocatalysts for fuel cells. Nano Research, 2015, 8, 418-440.	10.4	153
24	A Strategy to Promote the Electrocatalytic Activity of Spinels for Oxygen Reduction by Structure Reversal. Angewandte Chemie - International Edition, 2016, 55, 1340-1344.	13.8	153
25	Structural Evolution of Solid Pt Nanoparticles to a Hollow PtFe Alloy with a Ptâ€Skin Surface via Spaceâ€Confined Pyrolysis and the Nanoscale Kirkendall Effect. Advanced Materials, 2016, 28, 10673-10678.	21.0	150
26	Chimney effect of the interface in metal oxide/metal composite catalysts on the hydrogen evolution reaction. Applied Catalysis B: Environmental, 2019, 245, 122-129.	20.2	132
27	NaCl Crystallites as Dual-Functional and Water-Removable Templates To Synthesize a Three-Dimensional Graphene-like Macroporous Fe-N-C Catalyst. ACS Catalysis, 2017, 7, 6144-6149.	11.2	131
28	Dendritic Au/Pt and Au/PtCu Nanowires with Enhanced Electrocatalytic Activity for Methanol Electrooxidation. Small, 2014, 10, 3262-3265.	10.0	125
29	Inverse Spinel Cobalt–Iron Oxide and N-Doped Graphene Composite as an Efficient and Durable Bifuctional Catalyst for Li–O ₂ Batteries. ACS Catalysis, 2018, 8, 4082-4090.	11.2	122
30	An Efficient Antiâ€poisoning Catalyst against SO _{<i>x</i>} , NO _{<i>x</i>} , and PO _{<i>x</i>} : P, Nâ€Đoped Carbon for Oxygen Reduction in Acidic Media. Angewandte Chemie - International Edition, 2018, 57, 15101-15106.	13.8	122
31	Modulating the oxygen reduction activity of heteroatom-doped carbon catalysts <i>via</i> the triple effect: charge, spin density and ligand effect. Chemical Science, 2018, 9, 5795-5804.	7.4	121
32	Study of the degradation mechanisms of carbon-supported platinum fuel cells catalyst via different accelerated stress test. Journal of Power Sources, 2015, 273, 62-69.	7.8	120
33	Accurately measuring the hydrogen generation rate for hydrolysis of sodium borohydride on multiwalled carbon nanotubes/Co–B catalysts. International Journal of Hydrogen Energy, 2008, 33, 7110-7115.	7.1	116
34	Dual-Ligand Synergistic Modulation: A Satisfactory Strategy for Simultaneously Improving the Activity and Stability of Oxygen Evolution Electrocatalysts. ACS Catalysis, 2017, 7, 8184-8191.	11.2	109
35	Electrocatalytic Hydrogen Evolution in Neutral pH Solutions: Dual-Phase Synergy. ACS Catalysis, 2019, 9, 8712-8718.	11.2	103
36	Rational construction of macroporous CoFeP triangular plate arrays from bimetal–organic frameworks as high-performance overall water-splitting catalysts. Journal of Materials Chemistry A, 2019, 7, 17529-17535.	10.3	102

#	Article	IF	CITATIONS
37	Noble-metal-free Co ₃ S ₄ –S/G porous hybrids as an efficient electrocatalyst for oxygen reduction reaction. Chemical Science, 2016, 7, 4167-4173.	7.4	98
38	A eutectic salt-assisted semi-closed pyrolysis route to fabricate high-density active-site hierarchically porous Fe/N/C catalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 15504-15509.	10.3	98
39	Confining Iron Carbide Nanocrystals inside CN _{<i>x</i>} @CNT toward an Efficient Electrocatalyst for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2015, 7, 11508-11515.	8.0	94
40	Cobalt carbonate hydroxide/C: an efficient dual electrocatalyst for oxygen reduction/evolution reactions. Chemical Communications, 2014, 50, 15529-15532.	4.1	93
41	Facile synthesis of PtCu nanowires with enhanced electrocatalytic activity. Nano Research, 2015, 8, 2308-2316.	10.4	93
42	A metal–organic framework derived 3D hierarchical Co/N-doped carbon nanotube/nanoparticle composite as an active electrocatalyst for oxygen reduction in alkaline electrolyte. Journal of Materials Chemistry A, 2018, 6, 3386-3390.	10.3	92
43	Systematic exploration of N,C coordination effects on the ORR performance of Mn–N _x doped graphene catalysts based on DFT calculations. Physical Chemistry Chemical Physics, 2019, 21, 12826-12836.	2.8	92
44	Monodispersed Co in Mesoporous Polyhedrons: Fine-tuning of ZIF-8 Structure with Enhanced Oxygen Reduction Activity. Electrochimica Acta, 2017, 251, 498-504.	5.2	91
45	Sodium chloride-assisted green synthesis of a 3D Fe–N–C hybrid as a highly active electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 7781-7787.	10.3	88
46	Influence of Phosphorus Configuration on Electronic Structure and Oxygen Reduction Reactions of Phosphorus-Doped Graphene. Journal of Physical Chemistry C, 2017, 121, 19321-19328.	3.1	86
47	Rationally design of monometallic NiO-Ni3S2/NF heteronanosheets as bifunctional electrocatalysts for overall water splitting. Journal of Catalysis, 2019, 369, 345-351.	6.2	84
48	Preparation of Hollow Nitrogen Doped Carbon via Stresses Induced Orientation Contraction. Small, 2018, 14, e1804183.	10.0	83
49	Rational design of porous Ni-Co-Fe ternary metal phosphides nanobricks as bifunctional electrocatalysts for efficient overall water splitting. Applied Catalysis B: Environmental, 2022, 310, 121353.	20.2	82
50	Trimetallic PtCuCo hollow nanospheres with a dendritic shell for enhanced electrocatalytic activity toward ethylene glycol electrooxidation. Nanoscale, 2015, 7, 9985-9989.	5.6	80
51	Self-standing FeCo Prussian blue analogue derived FeCo/C and FeCoP/C nanosheet arrays for cost-effective electrocatalytic water splitting. Electrochimica Acta, 2019, 302, 45-55.	5.2	80
52	Surface Ru enriched structurally ordered intermetallic PtFe@PtRuFe core-shell nanostructure boosts methanol oxidation reaction catalysis. Applied Catalysis B: Environmental, 2019, 252, 120-127.	20.2	80
53	Three-Dimensional Fe,N-Decorated Carbon-Supported NiFeP Nanoparticles as an Efficient Bifunctional Catalyst for Rechargeable Zinc–O ₂ Batteries. ACS Applied Materials & Interfaces, 2019, 11, 699-705.	8.0	80
54	Exploring Feâ€N _{<i>x</i>} for Peroxide Reduction: Templateâ€Free Synthesis of Feâ€N _{<i>x</i>} Traumatized Mesoporous Carbon Nanotubes as an ORR Catalyst in Acidic and Alkaline Solutions. Chemistry - A European Journal, 2018, 24, 10630-10635.	3.3	79

#	Article	IF	CITATIONS
55	Three-dimensional Core@Shell Co@CoMoO4 nanowire arrays as efficient alkaline hydrogen evolution electro-catalysts. Applied Catalysis B: Environmental, 2019, 246, 41-49.	20.2	78
56	Pt-WC/C as a cathode electrocatalyst for hydrogen production by methanol electrolysis. Journal of Power Sources, 2007, 166, 458-461.	7.8	75
57	Catalyst Engineering for Electrochemical Energy Conversion from Water to Water: Water Electrolysis and the Hydrogen Fuel Cell. Engineering, 2020, 6, 653-679.	6.7	75
58	Enhanced dispersion and durability of Pt nanoparticles on a thiolated CNT support. Chemical Communications, 2011, 47, 10984.	4.1	73
59	In situ nitrogen-doped nanoporous carbon nanocables as an efficient metal-free catalyst for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 10154.	10.3	73
60	Sodium borohydride hydrolysis on highly efficient Co–B/Pd catalysts. International Journal of Hydrogen Energy, 2008, 33, 4048-4054.	7.1	72
61	Water-Insoluble Organics Dominate Brown Carbon in Wintertime Urban Aerosol of China: Chemical Characteristics and Optical Properties. Environmental Science & Technology, 2020, 54, 7836-7847.	10.0	72
62	Carbon-based air electrodes carrying MnO2 in zinc–air batteries. Journal of Power Sources, 2000, 91, 83-85.	7.8	69
63	Self-terminated activation for high-yield production of N,P-codoped nanoporous carbon as an efficient metal-free electrocatalyst for Zn-air battery. Carbon, 2018, 128, 97-105.	10.3	69
64	In situ growth of ruthenium oxide-nickel oxide nanorod arrays onÂnickel foam as a binder-free integrated cathode for hydrogen evolution. Journal of Power Sources, 2015, 274, 114-120.	7.8	67
65	Recent Progress of Carbonâ€Based Materials in Oxygen Reduction Reaction Catalysis. ChemElectroChem, 2018, 5, 1764-1774.	3.4	66
66	Label-free aptamer biosensor for thrombin detection based on functionalized graphene nanocomposites. Talanta, 2015, 141, 247-252.	5.5	65
67	Graphitized carbon-coated vanadium carbide nanoboscages modified by nickel with enhanced electrocatalytic activity for hydrogen evolution in both acid and alkaline solutions. Journal of Materials Chemistry A, 2017, 5, 23028-23034.	10.3	65
68	Understanding the Roles of Nitrogen Configurations in Hydrogen Evolution: Trace Atomic Cobalt Boosts the Activity of Planar Nitrogen-Doped Graphene. ACS Energy Letters, 2018, 3, 1345-1352.	17.4	65
69	Pt/C trapped in activated graphitic carbon layers as a highly durable electrocatalyst for the oxygen reduction reaction. Chemical Communications, 2014, 50, 15431-15434.	4.1	64
70	Nitrogen-doped carbon nanotubes as catalysts for oxygen reduction reaction. Journal of Power Sources, 2012, 215, 216-220.	7.8	62
71	Strongly coupled iron selenides-nitrogen-bond as an electronic transport bridge for enhanced synergistic oxygen electrocatalysis in rechargeable zinc-O2 batteries. Applied Catalysis B: Environmental, 2020, 265, 118569.	20.2	62
72	Controlled synthesis of hollow micro/meso-pore nitrogen-doped carbon with tunable wall thickness and specific surface area as efficient electrocatalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 2433-2437.	10.3	61

#	Article	IF	CITATIONS
73	Improved kinetics of methanol oxidation on Pt/hollow carbon sphere catalysts. Electrochimica Acta, 2008, 53, 8341-8345.	5.2	60
74	Controlled synthesis of single cobalt atom catalysts via a facile one-pot pyrolysis for efficient oxygen reduction and hydrogen evolution reactions. Science Bulletin, 2019, 64, 1095-1102.	9.0	59
75	Synthesis of phospholipid monolayer membrane functionalized graphene for drug delivery. Journal of Materials Chemistry, 2012, 22, 20634.	6.7	58
76	<i>In situ</i> growth of vertically aligned FeCoOOH-nanosheets/nanoflowers on Fe,ÂN co-doped 3D-porous carbon as efficient bifunctional electrocatalysts for rechargeable zinc–O ₂ batteries. Journal of Materials Chemistry A, 2019, 7, 9497-9502.	10.3	58
77	Towards Effective Utilization of Nitrogen-Containing Active Sites: Nitrogen-doped Carbon Layers Wrapped CNTs Electrocatalysts for Superior Oxygen Reduction. Electrochimica Acta, 2016, 187, 153-160.	5.2	56
78	Gel based sulfur cathodes with a high sulfur content and large mass loading for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 1650-1657.	10.3	56
79	Carbon nanotube-linked hollow carbon nanospheres doped with iron and nitrogen as single-atom catalysts for the oxygen reduction reaction in acidic solutions. Journal of Materials Chemistry A, 2019, 7, 14478-14482.	10.3	56
80	Green and facile synthesis of iron oxide nanoparticle-embedded N-doped biocarbon as an efficient oxygen reduction electrocatalyst for microbial fuel cells. Chemical Engineering Journal, 2020, 385, 123393.	12.7	56
81	A general strategy to enhance the alkaline stability of anion exchange membranes. Journal of Materials Chemistry A, 2017, 5, 6318-6327.	10.3	55
82	Tuning the branches and composition of PtCu nanodendrites through underpotential deposition of Cu towards advanced electrocatalytic activity. Journal of Materials Chemistry A, 2017, 5, 9014-9021.	10.3	55
83	Ultrahigh‣oading Zinc Singleâ€Atom Catalyst for Highly Efficient Oxygen Reduction in Both Acidic and Alkaline Media. Angewandte Chemie, 2019, 131, 7109-7113.	2.0	55
84	Enhanced Conductivity of Anion-Exchange Membrane by Incorporation of Quaternized Cellulose Nanocrystal. ACS Applied Materials & Interfaces, 2018, 10, 23774-23782.	8.0	54
85	Accelerated alkaline hydrogen evolution on M(OH) _x /M-MoPO _x (M = Ni, Co, Fe,) Tj ETC Science, 2020, 11, 2487-2493.	Qq1 1 0.78 7.4	4314 rgBT /0 54
86	Synthesis of ammonia <i>via</i> electrochemical nitrogen reduction on high-index faceted Au nanoparticles with a high faradaic efficiency. Chemical Communications, 2019, 55, 14482-14485.	4.1	52
87	Enhanced Photocatalytic Activity of Nanoparticle-Aggregated Ag–AgX(XÂ=ÂCl, Br)@TiO2 Microspheres Under Visible Light. Nano-Micro Letters, 2017, 9, 49.	27.0	50
88	Realâ€Time Probing Nanoporeâ€inâ€Nanogap Plasmonic Coupling Effect on Silver Supercrystals with Surfaceâ€Enhanced Raman Spectroscopy. Advanced Functional Materials, 2017, 27, 1603233.	14.9	50
89	Role of P-doping in Antipoisoning: Efficient MOF-Derived 3D Hierarchical Architectures for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2019, 123, 16796-16803.	3.1	50
90	A catalyst superior to carbon-supported-platinum for promotion of the oxygen reduction reaction: reduced-polyoxometalate supported palladium. Journal of Materials Chemistry A, 2015, 3, 13962-13969.	10.3	49

#	Article	IF	CITATIONS
91	Roles of H ₂ in annealing and growth times of graphene CVD synthesis over copper foil. Journal of Materials Chemistry A, 2014, 2, 16208-16216.	10.3	48
92	NaCl protected synthesis of 3D hierarchical metal-free porous nitrogen-doped carbon catalysts for the oxygen reduction reaction in acidic electrolyte. Chemical Communications, 2019, 55, 9023-9026.	4.1	48
93	Wavy PtCu alloy nanowire networks with abundant surface defects enhanced oxygen reduction reaction. Nano Research, 2019, 12, 2766-2773.	10.4	48
94	Leaching- and sintering-resistant hollow or structurally ordered intermetallic PtFe alloy catalysts for oxygen reduction reactions. Nanoscale, 2019, 11, 20115-20122.	5.6	48
95	Self-deposition of Pt nanocrystals on Mn3O4 coated carbon nanotubes for enhanced oxygen reduction electrocatalysis. Journal of Materials Chemistry A, 2013, 1, 7463.	10.3	47
96	A CO-tolerant PtRu catalyst supported on thiol-functionalized carbon nanotubes for the methanol oxidation reaction. Journal of Power Sources, 2014, 247, 360-364.	7.8	47
97	High Selective Electrochemical Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol on RuO ₂ –SnO ₂ –TiO ₂ /Ti Electrode. ACS Catalysis, 2019, 9, 11307-11316	. ^{11.2}	47
98	Role of non-metallic atoms in enhancing the catalytic activity of nickel-based compounds for hydrogen evolution reaction. Chemical Science, 2018, 9, 1822-1830.	7.4	46
99	Construction of Soft Base Tongs on Separator to Grasp Polysulfides from Shuttling in Lithium–Sulfur Batteries. Small, 2018, 14, e1804277.	10.0	46
100	Transformation of Metal–Organic Frameworks into Huge-Diameter Carbon Nanotubes with High Performance in Proton Exchange Membrane Fuel Cells. ACS Applied Materials & Interfaces, 2019, 11, 22290-22296.	8.0	45
101	High-density active sites porous Fe/N/C electrocatalyst boosting the performance of proton exchange membrane fuel cells. Journal of Power Sources, 2018, 401, 287-295.	7.8	44
102	Enveloping ultrathin Ti ₃ C ₂ nanosheets on carbon fibers: a high-density sulfur loaded lithium–sulfur battery cathode with remarkable cycling stability. Journal of Materials Chemistry A, 2020, 8, 7253-7260.	10.3	44
103	Interphase-oxidized ruthenium metal with half-filled d-orbitals for hydrogen oxidation in an alkaline solution. Journal of Materials Chemistry A, 2020, 8, 10168-10174.	10.3	44
104	Recent developments in the use of single-atom catalysts for water splitting. Chinese Journal of Catalysis, 2021, 42, 1269-1286.	14.0	44
105	Theoretically probing the possible degradation mechanisms of an FeNC catalyst during the oxygen reduction reaction. Chemical Science, 2021, 12, 12476-12484.	7.4	42
106	Novel, recyclable supramolecular metal complexes for the synthesis of cyclic carbonates from epoxides and CO 2 under solvent-free conditions. Journal of CO2 Utilization, 2017, 17, 243-255.	6.8	41
107	Tuning Interfacial Structures for Better Catalysis of Water Electrolysis. Chemistry - A European Journal, 2019, 25, 9799-9815.	3.3	41
108	A general method to construct single-atom catalysts supported on N-doped graphene for energy applications. Journal of Materials Chemistry A, 2020, 8, 6190-6195.	10.3	41

#	Article	IF	CITATIONS
109	Insights into Bacterial 6-Methylsalicylic Acid Synthase and Its Engineering to Orsellinic Acid Synthase for Spirotetronate Generation. Chemistry and Biology, 2010, 17, 495-503.	6.0	40
110	Space-Confined Pyrolysis for the Fabrication of Fe/N/C Nanoparticles as a High Performance Oxygen Reduction Reaction Electrocatalyst. Electrochimica Acta, 2017, 244, 47-53.	5.2	40
111	Efficient solvent-free fixation of CO2 into cyclic carbonates catalyzed by Bi(III) porphyrin/TBAI at atmospheric pressure. Molecular Catalysis, 2017, 432, 37-46.	2.0	39
112	Tuning the interface of Ni@Ni(OH) 2 /Pd/rGO catalyst to enhance hydrogen evolution activity and stability. Journal of Power Sources, 2017, 352, 26-33.	7.8	39
113	A comparative DFT study of the catalytic activity of MnO2 (211) and (2-2-1) surfaces for an oxygen reduction reaction. Chemical Physics Letters, 2012, 539-540, 89-93.	2.6	38
114	Sputtering nickel-molybdenum nanorods as an excellent hydrogen evolution reaction catalyst. Journal of Power Sources, 2015, 297, 413-418.	7.8	38
115	Carbon-based catalysts by structural manipulation with iron for oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 8405-8412.	10.3	38
116	A phase-transition-assisted method for the rational synthesis of nitrogen-doped hierarchically porous carbon materials for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 878-883.	10.3	38
117	Efficient Electrochemical Hydrogenation of Nitroaromatics into Arylamines on a CuCo ₂ O ₄ Spinel Cathode in an Alkaline Electrolyte. ACS Catalysis, 2022, 12, 58-65.	11.2	38
118	A neural-network-like catalyst structure for the oxygen reduction reaction: carbon nanotube bridged hollow PtCo alloy nanoparticles in a MOF-like matrix for energy technologies. Journal of Materials Chemistry A, 2019, 7, 19786-19792.	10.3	37
119	Hierarchical 3D porous carbon with facilely accessible Fe–N ₄ single-atom sites for Zn–air batteries. Journal of Materials Chemistry A, 2022, 10, 5925-5929.	10.3	37
120	Recent Progress in Precious Metalâ€Free Carbonâ€Based Materials towards the Oxygen Reduction Reaction: Activity, Stability, and Antiâ€Poisoning. Chemistry - A European Journal, 2020, 26, 3973-3990.	3.3	36
121	Fe ₃ O ₄ /FeS ₂ heterostructures enable efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 14145-14151.	10.3	36
122	Scalable synthesis of Cu-based ultrathin nanowire networks and their electrocatalytic properties. Nanoscale, 2016, 8, 4927-4932.	5.6	35
123	Role of Hydroxyl Species in Hydrogen Oxidation Reaction: A DFT Study. Journal of Physical Chemistry C, 2019, 123, 23931-23939.	3.1	35
124	Manipulating the surface composition of Pt–Ru bimetallic nanoparticles to control the methanol oxidation reaction pathway. Chemical Communications, 2020, 56, 2419-2422.	4.1	35
125	Sn and Sb co-doped RuTi oxides supported on TiO2 nanotubes anode for selectivity toward electrocatalytic chlorine evolution. Journal of Applied Electrochemistry, 2013, 43, 847-854.	2.9	34
126	Selfâ€assembly―and Preshapingâ€assisted Synthesis of Molybdenum Carbide Supported on Ultrathin Nitrogenâ€doped Graphitic Carbon Lamellas for the Hydrogen Evolution Reaction. ChemCatChem, 2017, 9, 1588-1593.	3.7	34

#	Article	IF	CITATIONS
127	Hierarchical coral-like FeNi(OH) /Ni via mild corrosion of nickel as an integrated electrode for efficient overall water splitting. Chinese Journal of Catalysis, 2018, 39, 1736-1745.	14.0	34
128	Pd-induced Pt(iv) reduction to form Pd@Pt/CNT core@shell catalyst for a more complete oxygen reduction. Journal of Materials Chemistry A, 2013, 1, 14443.	10.3	33
129	Carbon supported IrM (M = Fe, Ni, Co) alloy nanoparticles for the catalysis of hydrogen oxidation in acidic and alkaline medium. Chinese Journal of Catalysis, 2016, 37, 1142-1148.	14.0	33
130	Bimetallic Mn and Co encased within bamboo-like N-doped carbon nanotubes as efficient oxygen reduction reaction electrocatalysts. Journal of Colloid and Interface Science, 2019, 537, 238-246.	9.4	33
131	Revealing the Regulation Mechanism of Ir–MoO ₂ Interfacial Chemical Bonding for Improving Hydrogen Oxidation Reaction. ACS Catalysis, 2021, 11, 14932-14940.	11.2	33
132	RuTe/M (M = Pt, Pd) nanoparticle nanotubes with enhanced electrocatalytic activity. Journal of Materials Chemistry A, 2015, 3, 13642-13647.	10.3	32
133	Highly active electrocatalysis of hydrogen evolution reaction in alkaline medium by Ni–P alloy: A capacitance-activity relationship. Journal of Energy Chemistry, 2017, 26, 1245-1251.	12.9	32
134	Construction of a porous nitrogen-doped carbon nanotube with open-ended channels to effectively utilize the active sites for excellent oxygen reduction reaction activity. Chemical Communications, 2017, 53, 11426-11429.	4.1	32
135	Copper Foam Electrodes for Increased Power Generation in Thermally Regenerative Ammonia-Based Batteries for Low-Grade Waste Heat Recovery. Industrial & Engineering Chemistry Research, 2019, 58, 7408-7415.	3.7	32
136	Solid-State Synthesis of Highly Dispersed Nitrogen-Coordinated Single Iron Atom Electrocatalysts for Proton Exchange Membrane Fuel Cells. Nano Letters, 2021, 21, 3633-3639.	9.1	32
137	Activating COOH* intermediate by Ni/Ni3ZnC0.7 heterostructure in porous N-doped carbon nanofibers for boosting CO2 electroreduction. Applied Catalysis B: Environmental, 2022, 302, 120861.	20.2	32
138	Enhanced catalysis of radical-to-polysulfide interconversion <i>via</i> increased sulfur vacancies in lithium–sulfur batteries. Chemical Science, 2022, 13, 6224-6232.	7.4	32
139	Multi-walled carbon nanotube supported Pd nanocubes with enhanced electrocatalytic activity. Journal of Materials Chemistry A, 2016, 4, 4485-4489.	10.3	31
140	A DNAâ€Based and Electrochemically Transduced Keypad Lock System with Reset Function. Chemistry - A European Journal, 2012, 18, 14939-14942.	3.3	30
141	Bimetallic PdRu nanosponges with a tunable composition for ethylene glycol oxidation. RSC Advances, 2016, 6, 12486-12490.	3.6	30
142	Preparation of highly dispersed carbon supported AuPt nanoparticles <i>via</i> a capping agent-free route for efficient methanol oxidation. Journal of Materials Chemistry A, 2018, 6, 104-109.	10.3	30
143	Generation of three dimensional pore-controlled nitrogen-doped graphene hydrogels for high-performance supercapacitors by employing formamide as the modulator. Journal of Materials Chemistry A, 2017, 5, 1442-1445.	10.3	29
144	Thermally driven interfacial diffusion synthesis of nitrogen-doped carbon confined trimetallic Pt ₃ CoRu composites for the methanol oxidation reaction. Journal of Materials Chemistry A, 2019, 7, 18143-18149.	10.3	29

#	Article	IF	CITATIONS
145	Dispersive Single-Atom Metals Anchored on Functionalized Nanocarbons for Electrochemical Reactions. Topics in Current Chemistry, 2019, 377, 4.	5.8	29
146	Understanding the effect of interfacial interaction on metal/metal oxide electrocatalysts for hydrogen evolution and hydrogen oxidation reactions on the basis of first-principles calculations. Catalysis Science and Technology, 2020, 10, 4743-4751.	4.1	29
147	Aromatic Residues Regulating Electron Relay Ability of S-Containing Amino Acids by Formations of Sâ^ḯ€ Multicenter Three-Electron Bonds in Proteins. Journal of Physical Chemistry C, 2012, 116, 19682-19688.	3.1	28
148	Engineering self-assembled N-doped graphene–carbon nanotube composites towards efficient oxygen reduction electrocatalysts. Physical Chemistry Chemical Physics, 2014, 16, 13605-13609.	2.8	28
149	Cross-linked multi-atom Pt catalyst for highly efficient oxygen reduction catalysis. Applied Catalysis B: Environmental, 2021, 284, 119728.	20.2	28
150	In situ growth of RuO2–TiO2 catalyst with flower-like morphologies on the Ti substrate as a binder-free integrated anode for chlorine evolution. Journal of Applied Electrochemistry, 2016, 46, 841-849.	2.9	27
151	An Efficient Antiâ€poisoning Catalyst against SO _{<i>x</i>} , NO _{<i>x</i>} , and PO _{<i>x</i>} : P, Nâ€Doped Carbon for Oxygen Reduction in Acidic Media. Angewandte Chemie, 2018, 130, 15321-15326.	2.0	27
152	Formation of a thin-layer of nickel hydroxide on nickel phosphide nanopillars for hydrogen evolution. Electrochemistry Communications, 2018, 92, 9-13.	4.7	27
153	Electronic and Physical Property Manipulations: Recent Achievements towards Heterogeneous Carbonâ€based Catalysts for Oxygen Reduction Reaction. ChemCatChem, 2019, 11, 5885-5897.	3.7	26
154	Improved hydrogen oxidation reaction under alkaline conditions by Au–Pt alloy nanoparticles. Journal of Energy Chemistry, 2020, 40, 52-56.	12.9	25
155	Poly(vinyl alcohol)-Based Hydrogel Anion Exchange Membranes for Alkaline Fuel Cell. Macromolecules, 2021, 54, 7900-7909.	4.8	25
156	Improving the electrocatalytic activity for hydrogen evolution reaction by lowering the electrochemical impedance of RuO2/Ni-P. Electrochimica Acta, 2018, 260, 358-364.	5.2	24
157	ZnCl2 salt facilitated preparation of FeNC: Enhancing the content of active species and their exposure for highly-efficient oxygen reduction reaction. Chinese Journal of Catalysis, 2020, 41, 799-806.	14.0	24
158	Anion Exchange Membrane Based on Interpenetrating Polymer Network with Ultrahigh Ion Conductivity and Excellent Stability for Alkaline Fuel Cell. Research, 2020, 2020, 4794706.	5.7	24
159	Ultrathin and Super Strong UHMWPE Supported Composite Anion Exchange Membranes with Outstanding Fuel Cells Performance. Small, 2022, 18, e2105499.	10.0	24
160	RuO2 loaded into porous Ni as a synergistic catalyst for hydrogen production. RSC Advances, 2014, 4, 20521.	3.6	23
161	Scalable solid-state synthesis of coralline-like nanostructured Co@CoNC electrocatalyst for Zn–air batteries. Chemical Communications, 2018, 54, 8190-8193.	4.1	23
162	Intrinsic effects of strain on low-index surfaces of platinum: roles of the five 5d orbitals. Physical Chemistry Chemical Physics, 2019, 21, 3242-3249.	2.8	23

#	Article	IF	CITATIONS
163	Modulating the microenvironment structure of single Zn atom: ZnN4P/C active site for boosted oxygen reduction reaction. Chinese Journal of Catalysis, 2022, 43, 2193-2201.	14.0	23
164	Quantified mass transfer and superior antiflooding performance of ordered macroâ€mesoporous electrocatalysts. AICHE Journal, 2018, 64, 2881-2889.	3.6	22
165	Ligand-mediated bifunctional catalysis for enhanced oxygen reduction and methanol oxidation tolerance in fuel cells. Journal of Materials Chemistry A, 2018, 6, 18884-18890.	10.3	22
166	Functionalâ€Group Modification of Kraft Lignin for Enhanced Supercapacitors. ChemSusChem, 2020, 13, 2628-2633.	6.8	22
167	Enhancement in kinetics of the oxygen reduction on a silver catalyst by introduction of interlaces and defect-rich facets. Journal of Materials Chemistry A, 2017, 5, 15390-15394.	10.3	21
168	Microstructural Evolution of Au@Pt Core–Shell Nanoparticles under Electrochemical Polarization. ACS Applied Materials & Interfaces, 2019, 11, 30977-30986.	8.0	21
169	Durable hybrid electrocatalysts for proton exchange membrane fuel cells. Nano Energy, 2020, 77, 105192.	16.0	21
170	Selfâ€Aggregation to Construct Hydroxide Highways in Anion Exchange Membranes. Advanced Materials Interfaces, 2020, 7, 1902143.	3.7	21
171	Catalytic activity of V2CO2 MXene supported transition metal single atoms for oxygen reduction and hydrogen oxidation reactions: A density functional theory calculation study. Chinese Journal of Catalysis, 2021, 42, 1659-1666.	14.0	21
172	Achievements in Pt nanoalloy oxygen reduction reaction catalysts: strain engineering, stability and atom utilization efficiency. Chemical Communications, 2021, 57, 12898-12913.	4.1	21
173	High temperature self-assembly one-step synthesis of a structurally ordered PtFe catalyst for the oxygen reduction reaction. Chemical Communications, 2019, 55, 12028-12031.	4.1	20
174	Chromophoric Fingerprinting of Brown Carbon from Residential Biomass Burning. Environmental Science and Technology Letters, 2022, 9, 102-111.	8.7	20
175	A DFT study on PtMo resistance to SO2 poisoning. Science China Chemistry, 2013, 56, 1004-1008.	8.2	19
176	Co ₉ S ₈ @N,S-codoped carbon core–shell structured nanowires: constructing a fluffy surface for high-density active sites. Journal of Materials Chemistry A, 2018, 6, 14752-14760.	10.3	19
177	Surface-confined Pt-based catalysts for strengthening oxygen reduction performance. Progress in Natural Science: Materials International, 2020, 30, 796-806.	4.4	19
178	Construction of highly efficient ion channel within anion exchange membrane based on interpenetrating polymer network for H2/Air (CO2-free) alkaline fuel cell. Journal of Power Sources, 2021, 486, 229377.	7.8	19
179	The formation and evolution of secondary organic aerosol during summer in Xi'an: Aqueous phase processing in fog-rain days. Science of the Total Environment, 2021, 756, 144077.	8.0	19
180	Surfactantâ€Assisted Sol–Gel Synthesis of Nanostructured Rutheniumâ€Doped Lithium Iron Phosphate as a Cathode for Lithiumâ€Ion Batteries. ChemElectroChem, 2014, 1, 2146-2152.	3.4	18

#	Article	IF	CITATIONS
181	An unusual low-surface-area nitrogen doped carbon for ultrahigh gravimetric and volumetric capacitances. Journal of Materials Chemistry A, 2018, 6, 8868-8873.	10.3	18
182	More than oxygen vacancies: a collective crystal-plane effect of CeO ₂ in gas-phase selective oxidation of benzyl alcohol. Catalysis Science and Technology, 2019, 9, 2960-2967.	4.1	18
183	Integrating H2 generation with sewage disposal by an efficient anti-poisoning bifunctional electrocatalyst. Applied Catalysis B: Environmental, 2020, 277, 119175.	20.2	18
184	Advancements in the preparation methods of artificial cell membranes with lipids. Materials Chemistry Frontiers, 2021, 5, 5233-5246.	5.9	18
185	A solvent evaporation plus hydrogen reduction method to synthesize IrNi/C catalysts for hydrogen oxidation. Journal of Materials Chemistry A, 2014, 2, 10098-10103.	10.3	17
186	Metal complexes bearing 2-(imidazol-2-yl)phenol ligands: synthesis, characterization and catalytic performance in the fixation of carbon dioxide with epoxides. RSC Advances, 2015, 5, 53063-53072.	3.6	17
187	A Strategy to Promote the Electrocatalytic Activity of Spinels for Oxygen Reduction by Structure Reversal. Angewandte Chemie, 2016, 128, 1362-1366.	2.0	17
188	Amorphous FeO _x (<i>x</i> = 1, 1.5) coated Cu ₃ P nanosheets with bamboo leaves-like morphology induced by solvent molecule adsorption for highly active HER catalysts. Journal of Materials Chemistry A, 2020, 8, 3351-3356.	10.3	17
189	Precisely tuning the electronic structure of a structurally ordered PtCoFe alloy <i>via</i> a dual-component promoter strategy for oxygen reduction. Chemical Communications, 2021, 57, 4047-4050.	4.1	17
190	Polymer-coating-induced synthesis of FeNx enriched carbon nanotubes as cathode that exceeds 1.0ÂWÂcmâ^'2 peak power in both proton and anion exchange membrane fuel cells. Journal of Power Sources, 2021, 489, 229499.	7.8	17
191	DNAâ€organic molecular amphiphiles: Synthesis, selfâ€assembly, and hierarchical aggregates. Aggregate, 2021, 2, e95.	9.9	17
192	DFT study of difference caused by catalyst supports in Pt and Pd catalysis of oxygen reduction reaction. Science in China Series B: Chemistry, 2009, 52, 571-578.	0.8	16
193	Density Functional Theory Study of Oxygen Reduction Reaction on Different Types of N-Doped Graphene. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32, 321-328.	4.9	16
194	Nitrogen-doped graphene wrapped around silver nanowires for enhanced catalysis in oxygen reduction reaction. Journal of Solid State Electrochemistry, 2018, 22, 2287-2296.	2.5	16
195	Intelligent Optimization of Naâ^'Mnâ^'W/SiO ₂ Catalysts for the Oxidative Coupling of Methane. ChemNanoMat, 2018, 4, 487-495.	2.8	16
196	Promoting stability and activity of PtNi/C for oxygen reduction reaction via polyaniline-confined space annealing strategy. International Journal of Hydrogen Energy, 2019, 44, 5921-5928.	7.1	16
197	Integrating H2O2 generation from electrochemical oxygen reduction with the selective oxidation of organics in a dual-membrane reactor. Chemical Engineering Journal, 2022, 428, 131534.	12.7	16
198	Dual-Cation Interpenetrating Polymer Network Anion Exchange Membrane for Fuel Cells and Water Electrolyzers. Macromolecules, 2022, 55, 4647-4655.	4.8	16

#	Article	IF	CITATIONS
199	Inhibition of Tryptophan on AA 2024 in Chloride-Containing Solutions. Journal of Materials Engineering and Performance, 2011, 20, 265-270.	2.5	15
200	Waterâ€Based Synthesis of Palladium Trigonal Bipyramidal/Tetrahedral Nanocrystals with Enhanced Electrocatalytic Oxidation Activity. Chemistry - A European Journal, 2017, 23, 5799-5803.	3.3	15
201	Achieving High Conductivity at Low Ion Exchange Capacity for Anion Exchange Membranes with Electrospun Polyelectrolyte Nanofibers. ACS Applied Energy Materials, 2020, 3, 10660-10668.	5.1	15
202	ZIF derived mesoporous carbon frameworks with numerous edges and heteroatom-doped sites to anchor nano-Pt electrocatalyst. International Journal of Hydrogen Energy, 2020, 45, 22649-22657.	7.1	15
203	Phytic acid-assisted self-templating synthesis of N-P-Fe-tridoped hierarchical porous carbon for efficient oxygen reduction reaction. Journal of Power Sources, 2020, 451, 227808.	7.8	15
204	Interfacial Water Enrichment and Reorientation on Pt/C Catalysts Induced by Metal Oxides Participation for Boosting the Hydrogen Evolution Reaction. Journal of Physical Chemistry Letters, 2022, 13, 1069-1076.	4.6	15
205	A Facile Strategy to PdCu Bimetallic Alloy Nanosponges with Highly Porous Features as a Highâ€Performance Electrocatalytic Activity for Ethanol Electrooxidation in an Alkaline Medium. Electroanalysis, 2015, 27, 1871-1875.	2.9	14
206	Mo ₂ N–Ni/NF Heterostructure Boosts Electrocatalytic Hydrogen Evolution with Pt-Like Activity. Inorganic Chemistry, 2020, 59, 16514-16521.	4.0	14
207	Synthesis of hollow PdRuCo nanoparticles with enhanced electrocatalytic activity. RSC Advances, 2015, 5, 46935-46940.	3.6	13
208	"Superaerophobic―NiCo bimetallic phosphides for highly efficient hydrogen evolution reaction electrocatalysts. Chemical Communications, 2021, 57, 6173-6176.	4.1	13
209	Engineering multi-hollow PtCo nanoparticles for oxygen reduction reaction via a NaCl-sealed annealing strategy. Journal of Alloys and Compounds, 2021, 884, 161063.	5.5	13
210	Effects of substrate and transfer on CVD-grown graphene over sapphire-induced Cu films. Science China Chemistry, 2014, 57, 895-901.	8.2	12
211	Origin of the Enhanced Catalytic Activity of PtM/Pd (111) with Doped Atoms Changing from Chemically Inert Au to Active Os. Journal of Physical Chemistry C, 2017, 121, 8781-8786.	3.1	12
212	Alloys with Pt-skin or Pt-rich surface for electrocatalysis. Current Opinion in Chemical Engineering, 2018, 20, 60-67.	7.8	12
213	N-doped and Fe-, N-codoped carbon: tuning of porous structures for highly efficient oxygen reduction reaction. Journal of Materials Science, 2018, 53, 15246-15256.	3.7	12
214	Recent progress of mesoscience in design of electrocatalytic materials for hydrogen energy conversion. Particuology, 2020, 48, 19-33.	3.6	12
215	Balancing the Seesaw: Investigation of a Separator to Grasp Polysulfides with Diatomic Chemisorption. ACS Applied Materials & Interfaces, 2020, 12, 20596-20604.	8.0	12
216	DFT study on ORR catalyzed by bimetallic Pt-skin metals over substrates of Ir, Pd and Au. Nano Materials Science, 2023, 5, 287-292.	8.8	12

#	Article	IF	CITATIONS
217	Hydrogen-Mediated Synthesis of 3D Hierarchical Porous Zinc Catalyst for CO ₂ Electroreduction with High Current Density. Journal of Physical Chemistry C, 2021, 125, 23784-23790.	3.1	12
218	One‣tep Synthesis of Platinum Nanochain Networks toward Methanol Electrooxidation. ChemElectroChem, 2016, 3, 2093-2099.	3.4	11
219	Lithium electrodeposited on lithiophilic LTO/Ti ₃ C ₂ substrate as a dendrite-free lithium metal anode. Journal of Materials Chemistry A, 2020, 8, 20650-20657.	10.3	11
220	Heteroatom Modification of Nanoporous Nickel Surfaces for Electrocatalytic Water Splitting. ACS Applied Nano Materials, 2020, 3, 11298-11306.	5.0	11
221	3D Net-like GO-d-Ti ₃ C ₂ T _{<i>x</i>} MXene Aerogels with Catalysis/Adsorption Dual Effects for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 55235-55242.	8.0	11
222	Enhancement of luminescence performance from the alteration of stacking patterns of Pt(<scp>ii</scp>) dendrimers. Journal of Materials Chemistry C, 2015, 3, 2744-2750.	5.5	10
223	Facile template-based high-yield-transformation synthesis and electrocatalytic properties of PdTe nanowires. CrystEngComm, 2015, 17, 9011-9015.	2.6	10
224	Coverage-dependent acrylonitrile adsorption and electrochemical reduction kinetics on Pb electrode. Chemical Engineering Journal, 2020, 382, 123006.	12.7	10
225	Fe–N-doped carbon nanoparticles from coal tar soot and its novel application as a high performance air-cathode catalyst for microbial fuel cells. Electrochimica Acta, 2020, 363, 137177.	5.2	10
226	Effect of n-butanol cofeeding on the deactivation of methanol to olefin conversion over high-silica HZSM-5: A mechanism and kinetic study. Chemical Engineering Science, 2020, 226, 115859.	3.8	10
227	Concentrations, optical properties and sources of humic-like substances (HULIS) in fine particulate matter in Xi'an, Northwest China. Science of the Total Environment, 2021, 789, 147902.	8.0	10
228	A framework ensemble facilitates high Pt utilization in a low Pt loading fuel cell. Catalysis Science and Technology, 2021, 11, 2957-2963.	4.1	10
229	Insight into the boosted activity of TiO2–CoP composites for hydrogen evolution reaction: Accelerated mass transfer, optimized interfacial water, and promoted intrinsic activity. Journal of Energy Chemistry, 2022, 74, 111-120.	12.9	10
230	Potent Relay Stations for Electron Transfer in Proteins: Ï€â^Ï€ Three-Electron Bonds. Journal of Physical Chemistry C, 2013, 117, 18325-18333.	3.1	9
231	Tuning the Charge Transport Property of Naphthalene Diimide Derivatives by Changing the Substituted Position of Fluorine Atom on Molecular Backbone. Chinese Journal of Chemistry, 2014, 32, 1057-1064.	4.9	9
232	Gold nanoparticle stabilization within tailored cubic mesoporous silica: Optimizing alcohol oxidation activity. Chinese Journal of Catalysis, 2017, 38, 545-553.	14.0	9
233	Tuning the Composition of PdCuNi Hollow Nanospheres for Low Cost and Efficient Catalyst Towards Glycol Electrooxidation. Electroanalysis, 2017, 29, 682-685.	2.9	9
234	The Role of Polyaniline Molecular Structure in Producing Highâ€Performance Feâ€N Catalysts for Oxygen Reduction Reaction. ChemistrySelect, 2019, 4, 8135-8141.	1.5	8

#	Article	IF	CITATIONS
235	Theoretical research on the oxidation mechanism of doped carbon based catalysts for oxygen reduction reaction. Physical Chemistry Chemical Physics, 2019, 21, 26102-26110.	2.8	8
236	Boosting Hydrogen Evolution Reaction of Nickel Sulfides by Introducing Nonmetallic Dopants. Journal of Physical Chemistry C, 2020, 124, 24223-24231.	3.1	8
237	Acrylonitrile Conversion on Metal Cathodes: How Surface Adsorption Determines the Reduction Pathways. Industrial & Engineering Chemistry Research, 2021, 60, 8324-8330.	3.7	8
238	Enhancing Rate Performances of Carbon Based Supercapacitors. ChemistrySelect, 2019, 4, 6827-6832.	1.5	7
239	Transforming Niâ€Coagulated Polyferriertic Sulfate Sludge into Porous Heteroatomâ€Doped Carbonâ€Supported Transition Metal Phosphide: An Efficient Catalyst for Oxygen Evolution Reaction. Energy Technology, 2020, 8, 1900995.	3.8	7
240	Recent Progress of DNA Nanostructures on Amphiphilic Membranes. Macromolecular Bioscience, 2021, 21, e2000440.	4.1	7
241	A bimodal-pore strategy for synthesis of Pt ₃ Co/C electrocatalyst toward oxygen reduction reaction. Chemical Communications, 2021, 57, 4327-4330.	4.1	7
242	Modifying the sensibility of nonmetal-doped phosphorene by local or global properties. Physical Chemistry Chemical Physics, 2019, 21, 4899-4906.	2.8	7
243	Research Progress of Hydrogen Oxidation and Hydrogen Evolution Reaction Mechanism in Alkaline Media. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	4.9	7
244	Anion Exchange Membranes Synthesized by Acetalization of Poly(vinyl alcohol) for Fuel Cells. ACS Applied Energy Materials, 2022, 5, 7748-7757.	5.1	7
245	Corrosion Behavior of 35CrMn and Q235 Steel in Simulated Acid Rain Conditions. Journal of Materials Engineering and Performance, 2012, 21, 524-529.	2.5	6
246	In vivo investigation of the role of SfmO2 in saframycin A biosynthesis by structural characterization of the analogue saframycin O. Science China Chemistry, 2012, 55, 90-97.	8.2	6
247	Insight into the effect of CaMnO 3 support on the catalytic performance of platinum catalysts. Chemical Engineering Science, 2015, 135, 179-186.	3.8	6
248	Oxygen-Incorporated NiMoP ₂ Nanowire Arrays for Enhanced Hydrogen Evolution Activity in Alkaline Solution. ACS Applied Energy Materials, 0, , .	5.1	6
249	Preparation of monodisperse ferrous nanoparticles embedded in carbon aerogels <i>via in situ</i> solid phase polymerization for electrocatalytic oxygen reduction. Nanoscale, 2020, 12, 15318-15324.	5.6	6
250	Coating layer-free synthesis of sub-4 nm ordered intermetallic L10-PtCo catalyst for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2022, 47, 27116-27123.	7.1	6
251	Lattice-matching Ni-based scaffold with a spongy cover for uniform electric field against lithium dendrites. Chemical Communications, 2021, 57, 9442-9445.	4.1	5
252	High-loading Pt-alloy catalysts for boosted oxygen reduction reaction performance. Chinese Journal of Chemical Engineering, 2022, 48, 30-35.	3.5	5

#	Article	IF	CITATIONS
253	Synthesis of Pt3Ni-based functionalized MWCNTs to enhance electrocatalysis for PEM fuel cells. Journal of Solid State Electrochemistry, 2014, 18, 1893-1898.	2.5	4
254	Recent Advances in Nanoparticles Confined in Twoâ€Dimensional Materials as Highâ€Performance Electrocatalysts for Energyâ€Conversion Technologies. ChemCatChem, 2021, 13, 2541-2558.	3.7	4
255	Chemical oscillation in electrochemical oxidation of methanol on Pt surface. Science in China Series B: Chemistry, 2008, 51, 322-332.	0.8	3
256	Calcination Atmosphere Regulated Morphology and Catalytic Performance of Pt/SiO ₂ in Gasâ€phase Oxidative Dehydrogenation of KAâ€oil. ChemCatChem, 2018, 10, 5689-5697.	3.7	3
25 7	Molten-Salt-Assisted Synthesis of Nitrogen-Doped Carbon Nanosheets Derived from Biomass Waste of Gingko Shells as Efficient Catalyst for Oxygen Reduction Reaction. Processes, 2021, 9, 2124.	2.8	3
258	Phosphonate/Phosphine Oxide Dyad Additive for Efficient Perovskite Lightâ€Emitting Diodes. Angewandte Chemie, 2022, 134, .	2.0	3
259	Constructing Ni-VN interfaces with superior electrocatalytic activity for alkaline hydrogen evolution reaction. Journal of Colloid and Interface Science, 2022, 626, 486-493.	9.4	3
260	Engineering Pt-Bi2O3 Interface to Boost Cyclohexanone Selectivity in Oxidative Dehydrogenation of KA-Oil. Catalysts, 2021, 11, 1187.	3.5	2
261	Single-atom alloying sprinkles magic over copper for exclusive CO2 conversion to pure formic acid. Science China Chemistry, 2022, 65, 421-422.	8.2	2
262	Metabolic flux analysis of the halophilic archaeon Haladaptatus paucihalophilus. Biochemical and Biophysical Research Communications, 2015, 467, 1058-1062.	2.1	1
263	Frontispiece: Tuning Interfacial Structures for Better Catalysis of Water Electrolysis. Chemistry - A European Journal, 2019, 25, .	3.3	1
264	Seasoning Chinese cooking pans: The nanoscience behind the Kitchen God's blessing. Nano Materials Science, 2023, 5, 86-90.	8.8	1
265	Maximizing metal utilization by coupling cross-linked PtRu multi-atom on an atomically dispersed ZnFeNC support. Dalton Transactions, 2021, 50, 10354-10358.	3.3	1
266	Chemical signature and fractionation of trace elements in fine particles from anthropogenic and natural sources. Journal of Environmental Sciences, 2022, 114, 365-375.	6.1	1
267	Triathlete for the Oxygen Reduction Reaction in Zinc–Air Fuel Cells. Macromolecules, 2022, 55, 2524-2532.	4.8	1
268	Separators Based on the Dynamic Tipâ€Occupying Electrostatic Shield Effect for Dendriteâ€Free Lithiumâ€Metal Batteries. Advanced Sustainable Systems, 2022, 6, 2100386.	5.3	1
269	The catalysis of (de)lithiation in a nerve-cell-like anode of Li-ion battery. Journal of Materials Chemistry A, 0, , .	10.3	1
270	Synthesis, characterization and photophysical properties of homoleptic platinum(II) complexes with 2,2′-biimidazole-based ligands. Transition Metal Chemistry, 2018, 43, 231-241.	1.4	0

#	Article	IF	CITATIONS
271	Fast Charge Transfer Confers New Skills on 3D Graphene Sponges: Human Body Induction and Infrared Radiation Induction. ChemNanoMat, 2019, 5, 411-416.	2.8	Ο
272	Densely vertical-grown NiFe hydroxide nanosheets on a 3D nickel skeleton as a dendrite-free lithium anode. Chemical Communications, 2021, 57, 12988-12991.	4.1	0
273	Predicting Structureâ€dependent Properties Directly from the <scp>3D</scp> Molecular Images via Convolutional Neural Networks. AICHE Journal, 0, , .	3.6	0
274	Frontispiece: Recent Progress in Precious Metalâ€Free Carbonâ€Based Materials towards the Oxygen Reduction Reaction: Activity, Stability, and Antiâ€Poisoning. Chemistry - A European Journal, 2020, 26, .	3.3	0