Rui Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1437794/publications.pdf Version: 2024-02-01

RIII PENC

#	Article	IF	CITATIONS
1	Immunogenic nanomedicine based on CSH-responsive nanoscale covalent organic polymers for chemo-sonodynamic therapy. Biomaterials, 2022, 283, 121428.	11.4	25
2	Bacteria-derived membrane vesicles to advance targeted photothermal tumor ablation. Biomaterials, 2021, 268, 120550.	11.4	57
3	A general strategy towards personalized nanovaccines based on fluoropolymers for post-surgical cancer immunotherapy. Nature Nanotechnology, 2020, 15, 1043-1052.	31.5	332
4	Oxaliplatin-/NLG919 prodrugs-constructed liposomes for effective chemo-immunotherapy of colorectal cancer. Biomaterials, 2020, 255, 120190.	11.4	75
5	Facile Preparation of Cu ₂ Se Nanosheets as Dual-Functional Antibacterial Agents. ACS Applied Bio Materials, 2020, 3, 1418-1425.	4.6	13
6	Cell-Penetrating Peptide Enhanced Antigen Presentation for Cancer Immunotherapy. Bioconjugate Chemistry, 2019, 30, 2115-2126.	3.6	23
7	Nanoscale Coordination Polymer Based Nanovaccine for Tumor Immunotherapy. ACS Nano, 2019, 13, 13127-13135.	14.6	83
8	Nanovaccine based on a protein-delivering dendrimer for effective antigen cross-presentation and cancer immunotherapy. Biomaterials, 2019, 207, 1-9.	11.4	118
9	Functionalized graphene oxide triggers cell cycle checkpoint control through both the ATM and the ATR signaling pathways. Carbon, 2018, 129, 495-503.	10.3	15
10	Cancer Cell Membrane-Coated Adjuvant Nanoparticles with Mannose Modification for Effective Anticancer Vaccination. ACS Nano, 2018, 12, 5121-5129.	14.6	505
11	Near-Infrared-Triggered Photodynamic Therapy with Multitasking Upconversion Nanoparticles in Combination with Checkpoint Blockade for Immunotherapy of Colorectal Cancer. ACS Nano, 2017, 11, 4463-4474.	14.6	583
12	Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nature Communications, 2016, 7, 13193.	12.8	1,270
13	Functionalized graphene oxide serves as a novel vaccine nano-adjuvant for robust stimulation of cellular immunity. Nanoscale, 2016, 8, 3785-3795.	5.6	87
14	Functionalized graphene oxide in microbial engineering: An effective stimulator for bacterial growth. Carbon, 2016, 103, 172-180.	10.3	28
15	Graphene Oxide Selectively Enhances Thermostability of Trypsin. ACS Applied Materials & Interfaces, 2015, 7, 12270-12277.	8.0	35
16	Antigen-Loaded Upconversion Nanoparticles for Dendritic Cell Stimulation, Tracking, and Vaccination in Dendritic Cell-Based Immunotherapy. ACS Nano, 2015, 9, 6401-6411.	14.6	204
17	Stimulation of immune systems by conjugated polymers and their potential as an alternative vaccine adjuvant. Nanoscale, 2015, 7, 19282-19292.	5.6	17
18	Dual-Aptamer Modification Generates a Unique Interface for Highly Sensitive and Specific Electrochemical Detection of Tumor Cells. ACS Applied Materials & Interfaces, 2014, 6, 7309-7315.	8.0	74

Rui Peng

#	Article	IF	CITATIONS
19	Fates of Fe3O4 and Fe3O4@SiO2 nanoparticles in human mesenchymal stem cells assessed by synchrotron radiation-based techniques. Biomaterials, 2014, 35, 6412-6421.	11.4	54
20	Aptamer-conjugated upconversion nanoprobes assisted by magnetic separation for effective isolation and sensitive detection of circulating tumor cells. Nano Research, 2014, 7, 1327-1336.	10.4	64
21	Graphene-Based Nanocomposite As an Effective, Multifunctional, and Recyclable Antibacterial Agent. ACS Applied Materials & Interfaces, 2014, 6, 8542-8548.	8.0	179
22	Multilayer Dual-Polymer-Coated Upconversion Nanoparticles for Multimodal Imaging and Serum-Enhanced Gene Delivery. ACS Applied Materials & Interfaces, 2013, 5, 10381-10388.	8.0	67
23	Polyethylene Glycol and Polyethylenimine Dualâ€Functionalized Nanoâ€Graphene Oxide for Photothermally Enhanced Gene Delivery. Small, 2013, 9, 1989-1997.	10.0	378
24	Graphene Oxide–Silver Nanocomposite As a Highly Effective Antibacterial Agent with Species-Specific Mechanisms. ACS Applied Materials & Interfaces, 2013, 5, 3867-3874.	8.0	424
25	Functionalization of Graphene Oxide Generates a Unique Interface for Selective Serum Protein Interactions. ACS Applied Materials & Interfaces, 2013, 5, 1370-1377.	8.0	91
26	Behavior and Toxicity of Graphene and Its Functionalized Derivatives in Biological Systems. Small, 2013, 9, 1492-1503.	10.0	392
27	Dualâ€Polymerâ€Functionalized Nanoscale Graphene Oxide as a Highly Effective Gene Transfection Agent for Insect Cells with Cellâ€Typeâ€Dependent Cellular Uptake Mechanisms. Particle and Particle Systems Characterization, 2013, 30, 794-803.	2.3	34
28	Functionalized Graphene Oxide in Enzyme Engineering: A Selective Modulator for Enzyme Activity and Thermostability. ACS Nano, 2012, 6, 4864-4875.	14.6	204
29	A protein-based electrochemical method for label-free characterization of sequence-specific protein–DNA interactions. Electrochimica Acta, 2011, 56, 5759-5765.	5.2	6
30	Inorganic nanomaterials for tumor angiogenesis imaging. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37, 147-163.	6.4	41