José Eduardo J Eiras-Dias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1435975/publications.pdf

Version: 2024-02-01

361413 434195 31 1,266 20 citations h-index papers

31 g-index 33 33 33 1719 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Berry Phenolics of Grapevine under Challenging Environments. International Journal of Molecular Sciences, 2013, 14, 18711-18739.	4.1	373
2	Statistical modelling of grapevine phenology in Portuguese wine regions: observed trends and climate change projections. Journal of Agricultural Science, 2016, 154, 795-811.	1.3	93
3	Detection and identification of grape varieties in must and wine using nuclear and chloroplast microsatellite markers. Analytica Chimica Acta, 2006, 563, 283-291.	5.4	58
4	New insights on the genetic basis of Portuguese grapevine and on grapevine domestication. Genome, 2009, 52, 790-800.	2.0	47
5	High Resolution Melting (HRM) applied to wine authenticity. Food Chemistry, 2017, 216, 80-86.	8.2	46
6	Modeling Phenology, Water Status, and Yield Components of Three Portuguese Grapevines Using the STICS Crop Model. American Journal of Enology and Viticulture, 2015, 66, 482-491.	1.7	45
7	Portuguese traditional grapevine cultivars and wild vines (Vitis vinifera L.) share morphological and genetic traits. Genetic Resources and Crop Evolution, 2009, 56, 975-989.	1.6	44
8	Characterization of Portuguese populations of Vitis vinifera L. ssp. sylvestris (Gmelin) Hegi. Genetic Resources and Crop Evolution, 2007, 54, 981-988.	1.6	43
9	The First Insight into the Metabolite Profiling of Grapes from Three Vitis vinifera L. Cultivars of Two Controlled Appellation (DOC) Regions. International Journal of Molecular Sciences, 2014, 15, 4237-4254.	4.1	37
10	Examining the relationship between the Enhanced Vegetation Index and grapevine phenology. European Journal of Remote Sensing, 2014, 47, 753-771.	3.5	37
11	Five phylogenetic groups identified in the coat protein gene of grapevine leafroll-associated virus 3 obtained from Portuguese grapevine varieties. Archives of Virology, 2011, 156, 413-420.	2.1	36
12	A Candidate-Gene Association Study for Berry Colour and Anthocyanin Content in Vitis vinifera L PLoS ONE, 2012, 7, e46021.	2.5	35
13	Graft compatibility of Vitis spp.: the role of phenolic acids and flavanols. Scientia Horticulturae, 2016, 207, 140-145.	3.6	34
14	Label free DNA-based optical biosensor as a potential system for wine authenticity. Food Chemistry, 2019, 270, 299-304.	8.2	34
15	Phenolic Compounds Involved in Grafting Incompatibility of <i>Vitis</i> spp: Development and Validation of an Analytical Method for their Quantification. Phytochemical Analysis, 2015, 26, 1-7.	2.4	32
16	Winegrape phenology and temperature relationships in the Lisbon wine region, Portugal. Oeno One, 2016, 47, 287.	1.4	26
17	Grapevine Phenology in Four Portuguese Wine Regions: Modeling and Predictions. Applied Sciences (Switzerland), 2020, 10, 3708.	2.5	25
18	Grapevine variety identification using "Big Data―collected with miniaturized spectrometer combined with support vector machines and convolutional neural networks. Computers and Electronics in Agriculture, 2019, 163, 104855.	7.7	24

#	Article	IF	CITATIONS
19	Molecular Markers for Assessing Must Varietal Origin. Food Analytical Methods, 2012, 5, 1252-1259.	2.6	22
20	Characterisation of the Portuguese grapevine germplasm with 48 single-nucleotide polymorphisms. Australian Journal of Grape and Wine Research, 2016, 22, 504-516.	2.1	21
21	Molecular data mining to improve antibody-based detection of Grapevine leafroll-associated virus 1 (GLRaV-1). Journal of Virological Methods, 2013, 194, 258-270.	2.1	20
22	Gallic acid, sinapic acid and catechin as potential chemical markers of Vitis graft success. Scientia Horticulturae, 2019, 246, 129-135.	3.6	20
23	Phenological Model Intercomparison for Estimating Grapevine Budbreak Date (Vitis vinifera L.) in Europe. Applied Sciences (Switzerland), 2020, 10, 3800.	2.5	20
24	Occurrence of grapevine leafroll-associated virus 5 in Portugal: genetic variability and population structure in field-grown grapevines. Archives of Virology, 2012, 157, 1747-1765.	2.1	18
25	Identification by SNP Analysis of a Major Role for Cayetana Blanca in the Genetic Network of Iberian Peninsula Grapevine Varieties. American Journal of Enology and Viticulture, 2012, 63, 121-126.	1.7	16
26	Assessment of grapevine variety discrimination using stem hyperspectral data and AdaBoost of random weight neural networks. Applied Soft Computing Journal, 2018, 72, 140-155.	7.2	13
27	Predicting the flowering date of Portuguese grapevine varieties using temperature-based phenological models: a multi-site approach. Journal of Agricultural Science, 2018, 156, 865-876.	1.3	10
28	Using Rapid Chlorophyll Fluorescence Transients to Classify Vitis Genotypes. Plants, 2020, 9, 174.	3.5	10
29	<i>Vitis</i> flower types: from the wild to crop plants. PeerJ, 2019, 7, e7879.	2.0	10
30	Wine fingerprinting using a bio-geochemical approach. BIO Web of Conferences, 2015, 5, 02021.	0.2	9
31	Identity, synonymies and homonynies of minor grapevine cultivars maintained in the portuguese ampelographic collection. Ciencia E Tecnica Vitivinicola, 2015, 30, 43-52.	0.9	3