
Javier F Palatnik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1435349/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Control of leaf morphogenesis by microRNAs. Nature, 2003, 425, 257-263.	27.8	1,676
2	Specific Effects of MicroRNAs on the Plant Transcriptome. Developmental Cell, 2005, 8, 517-527.	7.0	1,345
3	Control of Jasmonate Biosynthesis and Senescence by miR319 Targets. PLoS Biology, 2008, 6, e230.	5.6	803
4	Control of cell proliferation in <i>Arabidopsis thaliana</i> by microRNA miR396. Development (Cambridge), 2010, 137, 103-112.	2.5	476
5	Sequence and Expression Differences Underlie Functional Specialization of Arabidopsis MicroRNAs miR159 and miR319. Developmental Cell, 2007, 13, 115-125.	7.0	399
6	A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nature Biotechnology, 2020, 38, 1274-1279.	17.5	272
7	Repression of Cell Proliferation by miR319-Regulated TCP4. Molecular Plant, 2014, 7, 1533-1544.	8.3	232
8	Postâ€ŧranscriptional control of <i><scp>GRF</scp></i> transcription factors by micro <scp>RNA</scp> miR396 and <scp>GIF</scp> coâ€activator affects leaf size and longevity. Plant Journal, 2014, 79, 413-426.	5.7	231
9	Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development. Genome Biology, 2014, 15, R41.	9.6	210
10	Functional Specialization of the Plant miR396 Regulatory Network through Distinct MicroRNA–Target Interactions. PLoS Genetics, 2012, 8, e1002419.	3.5	192
11	A loop-to-base processing mechanism underlies the biogenesis of plant microRNAs miR319 and miR159. EMBO Journal, 2009, 28, 3646-3656.	7.8	191
12	miR396 affects mycorrhization and root meristem activity in the legume <i><scp>M</scp>edicago truncatula</i> . Plant Journal, 2013, 74, 920-934.	5.7	186
13	Identification of plant microRNA homologs. Bioinformatics, 2006, 22, 359-360.	4.1	178
14	Functional Replacement of Ferredoxin by a Cyanobacterial Flavodoxin in Tobacco Confers Broad-Range Stress Tolerance. Plant Cell, 2006, 18, 2035-2050.	6.6	169
15	Identification of MicroRNA Processing Determinants by Random Mutagenesis of Arabidopsis MIR172a Precursor. Current Biology, 2010, 20, 49-54.	3.9	145
16	MicroRNA miR396 Regulates the Switch between Stem Cells and Transit-Amplifying Cells in Arabidopsis Roots. Plant Cell, 2015, 27, 3354-3366.	6.6	125
17	Small changes in the activity of chloroplastic NADP+-dependent ferredoxin oxidoreductase lead to impaired plant growth and restrict photosynthetic activity of transgenic tobacco plants. Plant Journal, 2002, 29, 281-293.	5.7	124
18	A Mechanistic Link between <i>STM</i> and <i>CUC1</i> during Arabidopsis Development Â. Plant Physiology, 2011, 156, 1894-1904.	4.8	124

JAVIER F PALATNIK

#	Article	IF	CITATIONS
19	Repression of Growth Regulating Factors by the MicroRNA396 Inhibits Cell Proliferation by UV-B Radiation in <i>Arabidopsis</i> Leaves. Plant Cell, 2013, 25, 3570-3583.	6.6	124
20	Spatial Control of Gene Expression by miR319-Regulated TCP Transcription Factors in Leaf Development. Plant Physiology, 2018, 176, 1694-1708.	4.8	119
21	Multiple RNA recognition patterns during microRNA biogenesis in plants. Genome Research, 2013, 23, 1675-1689.	5.5	110
22	MicroRNA miR396, GRF transcription factors and GIF co-regulators: a conserved plant growth regulatory module with potential for breeding and biotechnology. Current Opinion in Plant Biology, 2020, 53, 31-42.	7.1	110
23	Changes in amino acid composition and nitrogen metabolizing enzymes in ripening fruits of Lycopersicon esculentum Mill. Plant Science, 2000, 159, 125-133.	3.6	108
24	Morphogenesis of simple leaves: regulation of leaf size and shape. Wiley Interdisciplinary Reviews: Developmental Biology, 2014, 3, 41-57.	5.9	97
25	Reference Genes for Real-Time PCR Quantification of MicroRNAs and Messenger RNAs in Rat Models of Hepatotoxicity. PLoS ONE, 2012, 7, e36323.	2.5	89
26	Transgenic Tobacco Plants Overexpressing Chloroplastic Ferredoxin-NADP(H) Reductase Display Normal Rates of Photosynthesis and Increased Tolerance to Oxidative Stress. Plant Physiology, 2007, 143, 639-649.	4.8	87
27	The Role of Photosynthetic Electron Transport in the Oxidative Degradation of Chloroplastic Glutamine Synthetase. Plant Physiology, 1999, 121, 471-478.	4.8	82
28	The Flavoenzyme Ferredoxin (Flavodoxin)-NADP(H) Reductase Modulates NADP(H) Homeostasis during the soxRS Response of Escherichia coli. Journal of Bacteriology, 2002, 184, 1474-1480.	2.2	79
29	Evolutionary Footprints Reveal Insights into Plant MicroRNA Biogenesis. Plant Cell, 2017, 29, 1248-1261.	6.6	69
30	MicroRNA miR396 and RDR6 synergistically regulate leaf development. Mechanisms of Development, 2013, 130, 2-13.	1.7	67
31	Conservation and divergence of microRNA families in plants. Genome Biology, 2005, 6, P13.	9.6	66
32	Transgenic tobacco plants expressing antisense ferredoxin-NADP(H) reductase transcripts display increased susceptibility to photo-oxidative damage. Plant Journal, 2003, 35, 332-341.	5.7	60
33	Control of cell proliferation by microRNAs in plants. Current Opinion in Plant Biology, 2016, 34, 68-76.	7.1	60
34	Processing of plant microRNA precursors. Briefings in Functional Genomics, 2013, 12, 37-45.	2.7	57
35	Plants contain two SCO proteins that are differentially involved in cytochrome c oxidase function and copper and redox homeostasis. Journal of Experimental Botany, 2011, 62, 4281-4294.	4.8	49
36	Robust increase of leaf size by Arabidopsis thaliana GRF3-like transcription factors under different growth conditions. Scientific Reports, 2018, 8, 13447.	3.3	48

JAVIER F PALATNIK

#	Article	IF	CITATIONS
37	Keep calm and carry on: mi <scp>RNA</scp> biogenesis under stress. Plant Journal, 2019, 99, 832-843.	5.7	48
38	Role of MicroRNA miR319 in Plant Development. Signaling and Communication in Plants, 2012, , 29-47.	0.7	46
39	Identification of new microRNA-regulated genes by conserved targeting in plant species. Nucleic Acids Research, 2012, 40, 8893-8904.	14.5	45
40	GIF Transcriptional Coregulators Control Root Meristem Homeostasis. Plant Cell, 2018, 30, 347-359.	6.6	41
41	Efficiency and precision of microRNA biogenesis modes in plants. Nucleic Acids Research, 2018, 46, 10709-10723.	14.5	37

42 Status of antioxidant metabolites and enzymes in a catalase-deficient mutant of barley (Hordeum) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

43	Structure and RNA Interactions of the Plant MicroRNA Processing-Associated Protein HYL1. Biochemistry, 2010, 49, 8237-8239.	2.5	31
44	The <i>Arabidopsis</i> GRAS-type SCL28 transcription factor controls the mitotic cell cycle and division plane orientation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	30
45	comTAR: a web tool for the prediction and characterization of conserved microRNA targets in plants. Bioinformatics, 2014, 30, 2066-2067.	4.1	26
46	Identification of key sequence features required for microRNA biogenesis in plants. Nature Communications, 2020, 11, 5320.	12.8	23
47	Control of cell proliferation and elongation by miR396. Plant Signaling and Behavior, 2016, 11, e1184809.	2.4	19
48	Rapid measurement of residual dipolar couplings for fast fold elucidation of proteins. Journal of Biomolecular NMR, 2011, 51, 369-378.	2.8	18
49	ARF2 represses expression of plant <i>GRF</i> transcription factors in a complementary mechanism to microRNA miR396. Plant Physiology, 2021, 185, 1798-1812.	4.8	18
50	Second Double-Stranded RNA Binding Domain of Dicer-like Ribonuclease 1: Structural and Biochemical Characterization. Biochemistry, 2012, 51, 10159-10166.	2.5	16
51	Identification of mRNA-binding proteins during development: Characterization of Bufo arenarum cellular nucleic acid binding protein. Development Growth and Differentiation, 1999, 41, 183-191.	1.5	15
52	Potent inhibition of TCP transcription factors by miR319 ensures proper root growth in Arabidopsis. Plant Molecular Biology, 2022, 108, 93-103.	3.9	14
53	Construction of Specific Parallel Amplification of RNA Ends (SPARE) libraries for the systematic identification of plant microRNA processing intermediates. Methods, 2013, 64, 283-291.	3.8	10
54	Analysis of Expression Gradients of Developmental Regulators in Arabidopsis thaliana Roots. Methods in Molecular Biology, 2018, 1863, 3-17.	0.9	9

JAVIER F PALATNIK

#	Article	IF	CITATIONS
55	Dual function of HYPONASTIC LEAVES 1 during early skotomorphogenic growth in Arabidopsis. Plant Journal, 2020, 102, 977-991.	5.7	9
56	Structural Determinants of Arabidopsis thaliana Hyponastic Leaves 1 Function In Vivo. PLoS ONE, 2014, 9, e113243.	2.5	9
57	Growth-Regulating Factors, A Transcription Factor Family Regulating More than Just Plant Growth. , 2016, , 269-280.		8
58	Parallel screening and optimization of protein constructs for structural studies. Protein Science, 2009, 18, 434-439.	7.6	7
59	Alteration of the microRNA-122 regulatory network in rat models of hepatotoxicity. Environmental Toxicology and Pharmacology, 2014, 37, 354-364.	4.0	6
60	Inhibition of <i>Arabidopsis thaliana</i> CINâ€like TCP transcription factors by <i>Agrobacterium</i> Tâ€DNAâ€encoded 6B proteins. Plant Journal, 2020, 101, 1303-1317.	5.7	5
61	Biogenesis of Plant MicroRNAs. , 2011, , 251-268.		4
62	Detection of MicroRNA Processing Intermediates Through RNA Ligation Approaches. Methods in Molecular Biology, 2019, 1932, 261-283.	0.9	2
63	MicroRNAs and the regulation of leaf shape. , 2007, , 137-154.		Ο
64	Reprint of: Construction of Specific Parallel Amplification of RNA Ends (SPARE) libraries for the systematic identification of plant microRNA processing intermediates. Methods, 2014, 67, 36-44.	3.8	0
65	Editorial overview: Cell signalling and gene regulation: Something new, something old, something borrowed, something blue. Current Opinion in Plant Biology, 2018, 45, 185-187.	7.1	Ο
66	Beyond Dicer's cut. Nature Plants, 2019, 5, 1201-1202.	9.3	0