Kazunari Domen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1434856/publications.pdf

Version: 2024-02-01

		317	353
573	88,790	138	284
papers	citations	h-index	g-index
599	599	599	35678
399	399	333	33070
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting. Nature Communications, 2022, 13, 484.	12.8	156
2	Interface engineering of Ta3N5 thin film photoanode for highly efficient photoelectrochemical water splitting. Nature Communications, 2022, 13, 729.	12.8	99
3	Enhanced Overall Water Splitting by a Zirconiumâ€Doped TaONâ€Based Photocatalyst. Angewandte Chemie - International Edition, 2022, 61, e202116573.	13.8	36
4	Enhanced Overall Water Splitting by a Zirconiumâ€Doped TaONâ€Based Photocatalyst. Angewandte Chemie, 2022, 134, .	2.0	2
5	Overall photosynthesis of H2O2 by an inorganic semiconductor. Nature Communications, 2022, 13, 1034.	12.8	105
6	Strategies and Methods of Modulating Nitrogen-Incorporated Oxide Photocatalysts for Promoted Water Splitting. Accounts of Materials Research, 2022, 3, 449-460.	11.7	20
7	Physical properties and photocatalytic activity of pulverized Ga-doped La5Ti2Cu0.9Ag0.1O7S5 powder. Materials Letters, 2022, 319, 132290.	2.6	0
8	The 2022 solar fuels roadmap. Journal Physics D: Applied Physics, 2022, 55, 323003.	2.8	58
9	Bimetallic Synergy in Ultrafine Cocatalyst Alloy Nanoparticles for Efficient Photocatalytic Water Splitting. Advanced Functional Materials, 2022, 32, .	14.9	35
10	(Invited) Solar Hydrogen Production with Particulate Photocatalysts. ECS Meeting Abstracts, 2022, MA2022-01, 1565-1565.	0.0	0
11	Boosted Hydrogenâ€Evolution Kinetics Over Particulate Lanthanum and Rhodiumâ€Doped Strontium Titanate Photocatalysts Modified with Phosphonate Groups. Angewandte Chemie - International Edition, 2021, 60, 3654-3660.	13.8	22
12	Boosted Hydrogenâ€Evolution Kinetics Over Particulate Lanthanum and Rhodiumâ€Doped Strontium Titanate Photocatalysts Modified with Phosphonate Groups. Angewandte Chemie, 2021, 133, 3698-3704.	2.0	0
13	Enhanced photoelectrochemical performance from particulate ZnSe:Cu(ln,Ga)Se ₂ photocathodes during solar hydrogen production <i>via</i> particle size control. Sustainable Energy and Fuels, 2021, 5, 412-423.	4.9	16
14	Probing fundamental losses in nanostructured Ta ₃ N ₅ photoanodes: design principles for efficient water oxidation. Energy and Environmental Science, 2021, 14, 4038-4047.	30.8	31
15	Photocatalytic oxygen evolution triggered by photon upconverted emission based on triplet–triplet annihilation. Physical Chemistry Chemical Physics, 2021, 23, 5673-5679.	2.8	6
16	Synthesis of Y2Ti2O5S2 by thermal sulfidation for photocatalytic water oxidation and reduction under visible light irradiation. Research on Chemical Intermediates, 2021, 47, 225-234.	2.7	19
17	A Na-containing Pt cocatalyst for efficient visible-light-induced hydrogen evolution on BaTaO ₂ N. Journal of Materials Chemistry A, 2021, 9, 13851-13854.	10.3	13
18	Linking in situ charge accumulation to electronic structure in doped SrTiO3 reveals design principles for hydrogen-evolving photocatalysts. Nature Materials, 2021, 20, 511-517.	27.5	82

#	Article	lF	Citations
19	Microelectrode-based transient amperometry of O2 adsorption and desorption on a SrTiO3 photocatalyst excited under water. Physical Chemistry Chemical Physics, 2021, 23, 19386-19393.	2.8	3
20	Dual Ag/Co cocatalyst synergism for the highly effective photocatalytic conversion of CO ₂ by H ₂ O over Al-SrTiO ₃ . Chemical Science, 2021, 12, 4940-4948.	7.4	34
21	Doped semiconductor photocatalysts., 2021,,.		1
22	Effect of Mg ²⁺ substitution on the photocatalytic water splitting activity of LaMg _x Nb _{1â^'x} O _{1+3x} N _{2â^'3x} . Journal of Materials Chemistry A, 2021, 9, 8655-8662.	10.3	18
23	Efficiency Accreditation and Testing Protocols for Particulate Photocatalysts toward Solar Fuel Production. Joule, 2021, 5, 344-359.	24.0	165
24	Sequential cocatalyst decoration on BaTaO2N towards highly-active Z-scheme water splitting. Nature Communications, 2021, 12, 1005.	12.8	124
25	Maximizing Oxygen Evolution Performance on a Transparent NiFeO _{<i>x</i>} /Ta ₃ N ₅ Photoelectrode Fabricated on an Insulator. ACS Applied Materials & Diterfaces, 2021, 13, 16317-16325.	8.0	21
26	Surface-Modified Ta3N5 Photoanodes for Sunlight-Driven Overall Water Splitting by Photoelectrochemical Cells. Catalysts, 2021, 11, 584.	3.5	18
27	Photocatalytic and Photoelectrochemical Hydrogen Evolution from Water over Cu ₂ Sn _{<i>x</i>} Ge _{1–<i>x</i>} S ₃ Particles. Journal of the American Chemical Society, 2021, 143, 5698-5708.	13.7	33
28	Oxygen Evolution Activity of LaNbN2O-Based Photocatalysts Obtained from Nitridation of a Precursor Oxide Structurally Modified by Incorporating Volatile Elements. Catalysts, 2021, 11, 566.	3.5	0
29	Recent Developments in Visibleâ€Lightâ€Absorbing Semitransparent Photoanodes for Tandem Cells Driving Solar Water Splitting. Advanced Energy and Sustainability Research, 2021, 2, 2100023.	5. 8	16
30	Z-Scheme Overall Water Splitting Using Zn <i>_x</i> Cd _{1â€"<i>x</i>} Se Particles Coated with Metal Cyanoferrates as Hydrogen Evolution Photocatalysts. ACS Catalysis, 2021, 11, 8004-8014.	11.2	21
31	Charge carrier mapping for Z-scheme photocatalytic water-splitting sheet via categorization of microscopic time-resolved image sequences. Nature Communications, 2021, 12, 3716.	12.8	42
32	Simultaneously Tuning the Defects and Surface Properties of Ta ₃ N ₅ Nanoparticles by Mg〓Zr Codoping for Significantly Accelerated Photocatalytic H ₂ Evolution. Journal of the American Chemical Society, 2021, 143, 10059-10064.	13.7	62
33	Surface Modifications of (ZnSe) _{0.5} (CuGa _{2.5} Se _{4.25}) _{0.5} to Promote Photocatalytic Z-Scheme Overall Water Splitting. Journal of the American Chemical Society, 2021, 143, 10633-10641.	13.7	88
34	Highly Selective Photocatalytic Conversion of Carbon Dioxide by Water over Al-SrTiO ₃ Photocatalyst Modified with Silver–Metal Dual Cocatalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 9327-9335.	6.7	26
35	Synthesis of a Ga-doped La5Ti2Cu0.9Ag0.1O7S5 photocatalyst by thermal sulfidation for hydrogen evolution under visible light. Journal of Catalysis, 2021, 399, 230-236.	6.2	10
36	Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature, 2021, 598, 304-307.	27.8	728

#	Article	IF	CITATIONS
37	Accelerated photoelectrochemical oxygen evolution over a BaTaO2N photoanode modified with cobalt-phosphate-loaded TiO2 nanoparticles. Applied Physics Letters, 2021, 119, 123902.	3.3	6
38	Use of metamodels for rapid discovery of narrow bandgap oxide photocatalysts. IScience, 2021, 24, 103068.	4.1	17
39	The sputter-based synthesis of tantalum oxynitride nanoparticles with architecture and bandgap controlled by design. Applied Surface Science, 2021, 559, 149974.	6.1	11
40	A semitransparent particulate photoanode composed of SrTiO ₃ powder anchored on titania nanosheets. Sustainable Energy and Fuels, 2021, 5, 4850-4857.	4.9	0
41	A self-healing catalyst for electrocatalytic and photoelectrochemical oxygen evolution in highly alkaline conditions. Nature Communications, 2021, 12, 5980.	12.8	88
42	Cocatalyst engineering of a narrow bandgap Ga-La ₅ Ti ₂ Cu _{0.9} Ag _{0.1} O ₇ S ₅ photocatalyst towards effectively enhanced water splitting. Journal of Materials Chemistry A, 2021, 9, 27485-27492.	10.3	16
43	Unveiling charge dynamics of visible light absorbing oxysulfide for efficient overall water splitting. Nature Communications, 2021, 12, 7055.	12.8	31
44	Effects of annealing conditions on the oxygen evolution activity of a BaTaO2N photocatalyst loaded with cobalt species. Catalysis Today, 2020, 354, 204-210.	4.4	18
45	Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. Chemical Reviews, 2020, 120, 919-985.	47.7	1,605
46	Phase segregated Cu _{2â^'x} Se/Ni ₃ Se ₄ bimetallic selenide nanocrystals formed through the cation exchange reaction for active water oxidation precatalysts. Chemical Science, 2020, 11, 1523-1530.	7.4	26
47	Efficient photocatalytic oxygen evolution using BaTaO ₂ N obtained from nitridation of perovskite-type oxide. Journal of Materials Chemistry A, 2020, 8, 1127-1130.	10.3	35
48	Mutually-dependent kinetics and energetics of photocatalyst/co-catalyst/two-redox liquid junctions. Energy and Environmental Science, 2020, 13, 162-173.	30.8	29
49	Fabrication of Single-Crystalline BaTaO ₂ N from Chloride Fluxes for Photocatalytic H ₂ Evolution under Visible Light. Crystal Growth and Design, 2020, 20, 255-261.	3.0	32
50	Band structure engineering and defect control of Ta3N5 for efficient photoelectrochemical water oxidation. Nature Catalysis, 2020, 3, 932-940.	34.4	211
51	Zâ€Scheme Water Splitting under Nearâ€Ambient Pressure using a Zirconium Oxide Coating on Printable Photocatalyst Sheets. ChemSusChem, 2020, 13, 4906-4910.	6.8	10
52	Optimized Synthesis of Agâ€Modified Alâ€Doped SrTiO ₃ Photocatalyst for the Conversion of CO ₂ Using H ₂ O as an Electron Donor. ChemistrySelect, 2020, 5, 8779-8786.	1.5	26
53	Visible-Light-Driven Photocatalytic Water Splitting: Recent Progress and Challenges. Trends in Chemistry, 2020, 2, 813-824.	8.5	126
54	Transient Kinetics of O ₂ Evolution in Photocatalytic Water-Splitting Reaction. ACS Catalysis, 2020, 10, 13159-13164.	11.2	17

#	Article	IF	CITATIONS
55	Platy BaTaO ₂ N Crystals Fabricated from K ₂ CO ₃ –KCl Binary Flux for Photocatalytic H ₂ Evolution. ACS Applied Energy Materials, 2020, 3, 10669-10675.	5.1	15
56	Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water. Nature Energy, 2020, 5, 703-710.	39.5	156
57	A one-step synthesis of a Ta ₃ N ₅ nanorod photoanode from Ta plates and NH ₄ Cl powder for photoelectrochemical water oxidation. Chemical Communications, 2020, 56, 11843-11846.	4.1	6
58	Enhanced Photoelectrochemical Water Oxidation from CdTe Photoanodes Annealed with CdCl 2. Angewandte Chemie, 2020, 132, 13904-13910.	2.0	7
59	Facet engineering of LaNbON ₂ transformed from LaKNaNbO ₅ for enhanced photocatalytic O ₂ evolution. Journal of Materials Chemistry A, 2020, 8, 11743-11751.	10.3	21
60	Enhanced Photoelectrochemical Water Oxidation from CdTe Photoanodes Annealed with CdCl ₂ . Angewandte Chemie - International Edition, 2020, 59, 13800-13806.	13.8	21
61	Photoelectrochemical Properties of Particulate CuGaSe2 and CuIn0.7Ga0.3Se2 Photocathodes in Nonaqueous Electrolyte. Bulletin of the Chemical Society of Japan, 2020, 93, 942-948.	3.2	3
62	Photocatalytic water splitting with a quantum efficiency of almost unity. Nature, 2020, 581, 411-414.	27.8	1,227
63	Self-activated Rh–Zr mixed oxide as a nonhazardous cocatalyst for photocatalytic hydrogen evolution. Chemical Science, 2020, 11, 6862-6867.	7.4	12
64	Spatially separating redox centers on 2D carbon nitride with cobalt single atom for photocatalytic H $\langle \text{sub} \rangle 2 \langle \text{sub} \rangle 2 \langle \text{sub} \rangle$ production. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6376-6382.	7.1	245
65	Ta ₃ N ₅ -Nanorods enabling highly efficient water oxidation <i>via</i> advantageous light harvesting and charge collection. Energy and Environmental Science, 2020, 13, 1519-1530.	30.8	80
66	Efficient Water Oxidation Using Ta 3 N 5 Thin Film Photoelectrodes Prepared on Insulating Transparent Substrates. ChemSusChem, 2020, 13, 1974-1978.	6.8	16
67	Development of a Core–Shell Heterojunction Ta ₃ N ₅ Nanorods/BaTaO ₂ N Photoanode for Solar Water Splitting. ACS Energy Letters, 2020, 5, 2492-2497.	17.4	58
68	Gas phase photocatalytic water splitting of moisture in ambient air: Toward reagent-free hydrogen production. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401, 112757.	3.9	15
69	Plasma-enhanced chemical vapor deposition Ta ₃ N ₅ synthesis leading to high current density during PEC oxygen evolution. Sustainable Energy and Fuels, 2020, 4, 2293-2300.	4.9	7
70	Fabrication of BaTaO ₂ N Thin Films by Interfacial Reactions of BaCO ₃ /Ta ₃ N ₅ Layers on a Ta Substrate and Resulting High Photoanode Efficiencies During Water Splitting. Solar Rrl, 2020, 4, 1900542.	5.8	15
71	Minimizing energy demand and environmental impact for sustainable NH3 and H2O2 productionâ€"A perspective on contributions from thermal, electro-, and photo-catalysis. Applied Catalysis A: General, 2020, 594, 117419.	4.3	32
72	Efficient photoelectrochemical hydrogen production over CulnS ₂ photocathodes modified with amorphous Ni-MoS _x operating in a neutral electrolyte. Sustainable Energy and Fuels, 2020, 4, 1607-1611.	4.9	10

#	Article	IF	CITATIONS
73	Effective Driving of Ag-Loaded and Al-Doped SrTiO ₃ under Irradiation at λ > 300 nm for the Photocatalytic Conversion of CO ₂ by H ₂ O. ACS Applied Energy Materials, 2020, 3, 1468-1475.	5.1	56
74	Theoretical perspective of performance-limiting parameters of $Cu(ln1\hat{a}^2xGax)Se2-based photocathodes. Journal of Materials Chemistry A, 2020, 8, 9194-9201.$	10.3	11
75	ZnTe-based photocathode for hydrogen evolution from water under sunlight. APL Materials, 2020, 8, 041101.	5.1	6
76	Efficient photocatalytic hydrogen evolution on single-crystalline metal selenide particles with suitable cocatalysts. Chemical Science, 2020, 11 , $6436-6441$.	7.4	21
77	(Keynote) Large Scale Solar Hydrogen Production with Water Splitting Panel. ECS Meeting Abstracts, 2020, MA2020-01, 1726-1726.	0.0	0
78	Transparent Ta ₃ N ₅ Photoanodes for Efficient Oxygen Evolution toward the Development of Tandem Cells. Angewandte Chemie, 2019, 131, 2322-2326.	2.0	9
79	Effects of Se Incorporation in La ₅ Ti ₂ CuS ₅ O ₇ by Annealing on Physical Properties and Photocatalytic H ₂ Evolution Activity. ACS Applied Materials & Amp; Interfaces, 2019, 11, 5595-5601.	8.0	17
80	Photoelectrochemical-voltaic cells consisting of particulate Zn _x Cd _{1â^'x} Se photoanodes with photovoltages exceeding 1.23 V. Sustainable Energy and Fuels, 2019, 3, 2733-2741.	4.9	2
81	Solar-Driven Water Splitting over a BaTaO ₂ N Photoanode Enhanced by Annealing in Argon. ACS Applied Energy Materials, 2019, 2, 5777-5784.	5.1	33
82	Metal selenides for photocatalytic Z-scheme pure water splitting mediated by reduced graphene oxide. Chinese Journal of Catalysis, 2019, 40, 1668-1672.	14.0	21
83	Upscaling of Temperature-Sensitive Particle Photocatalyst Electrodes: Fully Ambient and Scalable Roll-Press Fabrication of Ta3N5 Photoelectrodes on Metal Substrate. ACS Sustainable Chemistry and Engineering, 2019, 7, 19407-19414.	6.7	10
84	Electrochemical Evaluation for Multiple Functions of Ptâ€loaded TiO 2 Nanoparticles Deposited on a Photocathode. ChemElectroChem, 2019, 6, 4859-4866.	3.4	11
85	Impact of lattice defects on water oxidation properties in SnNb2O6 photoanode prepared by pulsed-laser deposition method. Journal of Applied Physics, 2019, 126, .	2.5	5
86	Progress in the Development of Highly Efficient Photocatalytic Systems for Hydrogen Production from Water under Sunlight. Journal of the Japan Petroleum Institute, 2019, 62, 120-125.	0.6	1
87	Distinguishing the effects of altered morphology and size on the visible light-induced water oxidation activity and photoelectrochemical performance of BaTaO ₂ N crystal structures. Faraday Discussions, 2019, 215, 227-241.	3.2	14
88	The effects of annealing barium niobium oxynitride in argon on photoelectrochemical water oxidation activity. Journal of Materials Chemistry A, 2019, 7, 493-502.	10.3	27
89	Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chemical Society Reviews, 2019, 48, 2109-2125.	38.1	1,639
90	An Al-doped SrTiO ₃ photocatalyst maintaining sunlight-driven overall water splitting activity for over 1000Âh of constant illumination. Chemical Science, 2019, 10, 3196-3201.	7.4	163

#	Article	IF	CITATIONS
91	Particulate Photocatalysts for Water Splitting: Recent Advances and Future Prospects. ACS Energy Letters, 2019, 4, 542-549.	17.4	229
92	Regression model for stabilization energies associated with anion ordering in perovskite-type oxynitrides. Journal of Energy Chemistry, 2019, 36, 7-14.	12.9	21
93	Efficient hydrogen evolution on (CuInS ₂) _x (ZnS) _{1â^'x} solid solution-based photocathodes under simulated sunlight. Chemical Communications, 2019, 55, 470-473.	4.1	25
94	Revealing the role of the Rh valence state, La doping level and Ru cocatalyst in determining the H ₂ evolution efficiency in doped SrTiO ₃ photocatalysts. Sustainable Energy and Fuels, 2019, 3, 208-218.	4.9	56
95	Sunlightâ€Driven Production of Methylcyclohexane from Water and Toluene Using ZnSe : Cu(In,Ga)Se ₂ â€Based Photocathode. ChemCatChem, 2019, 11, 4266-4271.	3.7	7
96	Oxysulfide photocatalyst for visible-light-driven overall water splitting. Nature Materials, 2019, 18, 827-832.	27.5	422
97	Transient Absorption Spectroscopy Reveals Performance-Limiting Factors in a Narrow-Bandgap Oxysulfide La ₅ (Ti _{0.99} Mg _{0.01}) ₂ CuS ₅ 5Ocsub>6.99 Photocatalyst for H ₂ Generation, Journal of Physical Chemistry C, 2019, 123, 14246-14252.	3.1	6
98	Construction of Spatial Charge Separation Facets on BaTaO ₂ N Crystals by Flux Growth Approach for Visible-Light-Driven H ₂ Production. ACS Applied Materials & Samp; Interfaces, 2019, 11, 22264-22271.	8.0	51
99	Core–Shell‧tructured LaTaON ₂ Transformed from LaKNaTaO ₅ Plates for Enhanced Photocatalytic H ₂ Evolution. Angewandte Chemie, 2019, 131, 10776-10780.	2.0	8
100	Core–Shellâ€Structured LaTaON ₂ Transformed from LaKNaTaO ₅ Plates for Enhanced Photocatalytic H ₂ Evolution. Angewandte Chemie - International Edition, 2019, 58, 10666-10670.	13.8	49
101	Origin of the overall water splitting activity of Ta ₃ N ₅ revealed by ultrafast transient absorption spectroscopy. Chemical Science, 2019, 10, 5353-5362.	7.4	57
102	One-dimensional Anisotropic Electronic States in Needle-shaped La5Ti2CuS5O7 Single Crystals Grown in Molten Salt in Bridgman Furnace. Crystal Growth and Design, 2019, 19, 2419-2427.	3.0	3
103	Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nature Catalysis, 2019, 2, 387-399.	34.4	985
104	Metal selenide photocatalysts for visible-light-driven $\langle i \rangle Z \langle i \rangle$ -scheme pure water splitting. Journal of Materials Chemistry A, 2019, 7, 7415-7422.	10.3	67
105	A Semitransparent Nitride Photoanode Responsive up to <i>λ</i> =600â€nm Based on a Carbon Nanotube Thin Film Electrode. ChemPhotoChem, 2019, 3, 521-524.	3.0	13
106	Visibleâ€Lightâ€Driven Photocatalytic Zâ€Scheme Overall Water Splitting in La ₅ Ti ₂ AgS ₅ O ₇ â€based Powderâ€Suspension System. ChemSusChem, 2019, 12, 1906-1910.	6.8	29
107	Suppression of poisoning of photocathode catalysts in photoelectrochemical cells for highly stable sunlight-driven overall water splitting. Journal of Chemical Physics, 2019, 150, 041713.	3.0	11
108	Transparent Ta ₃ N ₅ Photoanodes for Efficient Oxygen Evolution toward the Development of Tandem Cells. Angewandte Chemie - International Edition, 2019, 58, 2300-2304.	13.8	75

#	Article	IF	CITATIONS
109	Visible-Light-Driven Water Splitting Using Perovskite-Type Oxynitride Photoanodes. ECS Meeting Abstracts, 2019, , .	0.0	0
110	Efficient Photocatalytic Water Splitting Using Al-Doped SrTiO⟨sub⟩3⟨/sub⟩ Coloaded with Molybdenum Oxide and Rhodium–Chromium Oxide. ACS Catalysis, 2018, 8, 2782-2788.	11.2	180
111	A Particulate Photocatalyst Water-Splitting Panel for Large-Scale Solar Hydrogen Generation. Joule, 2018, 2, 509-520.	24.0	468
112	Particulate photocathode composed of (ZnSe) < sub>0.85 < sub>(Culn < sub>0.7 < sub>0.3 < sub>Se < sub>2 < sub>) < sub>0.15 < sub> synthesized with Na < sub>2 < sub>S for enhanced sunlight-driven hydrogen evolution. Sustainable Energy and Fuels, 2018, 2, 1957-1965.	4.9	15
113	Frontispiece: Recent Progress in the Surface Modification of Photoelectrodes toward Efficient and Stable Overall Water Splitting. Chemistry - A European Journal, 2018, 24, .	3.3	0
114	Stable Hydrogen Production from Water on an NIRâ€Responsive Photocathode under Harsh Conditions. Small Methods, 2018, 2, 1800018.	8.6	18
115	Solution-Processed Cd-Substituted CZTS Photocathode for Efficient Solar Hydrogen Evolution from Neutral Water. Joule, 2018, 2, 537-548.	24.0	102
116	Artificial Photosynthesis: Taking a Big Leap for Powering the Earth by Harnessing Solar Energy. Particle and Particle Systems Characterization, 2018, 35, 1700451.	2.3	10
117	"A bridge over troubled gaps†up-conversion driven photocatalysis for hydrogen generation and pollutant degradation by near-infrared excitation. Chemical Communications, 2018, 54, 1905-1908.	4.1	18
118	Visibleâ€Lightâ€Responsive Photoanodes for Highly Active, Stable Water Oxidation. Angewandte Chemie - International Edition, 2018, 57, 8396-8415.	13.8	145
119	Auf sichtbares Licht ansprechende Photoanoden f $\tilde{A}^{1}/4$ r hochaktive, dauerhafte Wasseroxidation. Angewandte Chemie, 2018, 130, 8530-8550.	2.0	22
120	Plate-like Sm ₂ Ti ₂ S ₂ O ₅ Particles Prepared by a Flux-Assisted One-Step Synthesis for the Evolution of O ₂ from Aqueous Solutions by Both Photocatalytic and Photoelectrochemical Reactions. Journal of Physical Chemistry C, 2018, 122, 13492-13499.	3.1	18
121	Efficient Redox-Mediator-Free Z-Scheme Water Splitting Employing Oxysulfide Photocatalysts under Visible Light. ACS Catalysis, 2018, 8, 1690-1696.	11.2	127
122	Phase-segregated NiP _x @FeP _y O _z core@shell nanoparticles: ready-to-use nanocatalysts for electro- and photo-catalytic water oxidation through <i>in situ</i> activation by structural transformation and spontaneous ligand removal. Chemical Science, 2018, 9, 4830-4836.	7.4	21
123	Powder-based (CuGa _{1â^'y} In _y) _{1â^'x} Zn _{2x} S ₂ solid solution photocathodes with a largely positive onset potential for solar water splitting. Sustainable Energy and Fuels, 2018, 2, 2016-2024.	4.9	28
124	Boosting photocatalytic overall water splitting by Co doping into Mn ₃ O ₄ nanoparticles as oxygen evolution cocatalysts. Nanoscale, 2018, 10, 10420-10427.	5.6	56
125	Recent Progress in the Surface Modification of Photoelectrodes toward Efficient and Stable Overall Water Splitting. Chemistry - A European Journal, 2018, 24, 5697-5706.	3.3	49

Effects of Calcination Temperature on the Physical Properties and Hydrogen Evolution Activities of La₅Ti₂Cu(S_{1â€}<i>_x</ii>Se<i>_x</ii>)₅5</sub>23 sub>7 8/sub> Photocatalysts. Particle and Particle Systems Characterization, 2018, 35, 1700275.

#	Article	IF	CITATIONS
127	Synthesis and visible-light-induced sacrificial photocatalytic water oxidation of quinary oxynitride BaNb0.5Ta0.5O2N crystals. Journal of Energy Chemistry, 2018, 27, 1415-1421.	12.9	18
128	Activation of a particulate Ta ₃ N ₅ water-oxidation photoanode with a GaN hole-blocking layer. Sustainable Energy and Fuels, 2018, 2, 73-78.	4.9	23
129	Optimal Metal Oxide Deposition Conditions and Properties for the Enhancement of Hydrogen Evolution over Particulate La ₅ Ti ₂ Cu _{1â°'<i>x</i>} Ag _{<i>x</i>} S ₅ 5O _{7<td>ub³;O</td><td>3</td>}	ub³;O	3
130	PHOTOANODIC AND PHOTOCATHODIC MATERIALS APPLIED FOR FREE-RUNNING SOLAR WATER SPLITTING DEVICES., 2018,, 251-289.		0
131	Surface Protective and Catalytic Layer Consisting of RuO2 and Pt for Stable Production of Methylcyclohexane Using Solar Energy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 44396-44402.	8.0	13
132	Printable Photocatalyst Sheets Incorporating a Transparent Conductive Mediator for Z-Scheme Water Splitting. Joule, 2018, 2, 2667-2680.	24.0	74
133	Surface Strategies for Particulate Photocatalysts toward Artificial Photosynthesis. Joule, 2018, 2, 2260-2288.	24.0	146
134	Developments and Trends of the Photocatalyst ~Hydrogen Production Technologies based on Particulate Photocatalysts. Journal of the Institute of Electrical Engineers of Japan, 2018, 138, 598-601.	0.0	0
135	Ta ₃ N ₅ Photoanodes Fabricated by Providing NaCl–Na ₂ CO ₃ Evaporants to Tantalum Substrate Surface under NH ₃ Atmosphere. ACS Applied Energy Materials, 2018, 1, 6129-6135.	5.1	7
136	Investigation on nitridation processes of Sr2Nb2O7 and SrNbO3 to SrNbO2N for photoelectrochemical water splitting. Scientific Reports, 2018, 8, 15849.	3.3	21
137	Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nature Catalysis, 2018, 1, 756-763.	34.4	390
138	Direct observation of hydrogen bubble generation on photocatalyst particles by in situ electron microscopy. Chemical Physics Letters, 2018, 706, 564-567.	2.6	3
139	Shifting the NIR into the UV-blue: Up-conversion boosted photocatalysis. Optical Materials, 2018, 83, 315-320.	3.6	9
140	Efficient Solarâ€Driven Water Oxidation over Perovskiteâ€Type BaNbO ₂ N Photoanodes Absorbing Visible Light up to 740 nm. Advanced Energy Materials, 2018, 8, 1800094.	19.5	56
141	Development of highly efficient Culn _{0.5} Ga _{0.5} Se ₂ -based photocathode and application to overall solar driven water splitting. Energy and Environmental Science, 2018, 11, 3003-3009.	30.8	122
142	Towards zero bias photoelectrochemical water splitting: onset potential improvement on a Mg:GaN modified-Ta ₃ N ₅ photoanode. Journal of Materials Chemistry A, 2018, 6, 15265-15273.	10.3	32
143	Particulate photocatalyst sheets based on non-oxide semiconductor materials for water splitting under visible light irradiation. Catalysis Science and Technology, 2018, 8, 3918-3925.	4.1	27
144	Water Splitting: Stable Hydrogen Production from Water on an NIR-Responsive Photocathode under Harsh Conditions (Small Methods 5/2018). Small Methods, 2018, 2, 1800029.	8.6	0

#	Article	IF	CITATIONS
145	La 5 Ti 2 Cu 0.9 Ag 0.1 S 5 O 7 Modified with a Molecular Ni Catalyst for Photoelectrochemical H 2 Generation. Chemistry - A European Journal, 2018, 24, 18393-18397.	3.3	13
146	Development of Sunlight Driven Water Splitting Devices towards Future Artificial Photosynthetic Industry. ChemEngineering, 2018, 2, 36.	2.4	27
147	Understanding the visible-light photocatalytic activity of GaN:ZnO solid solution: the role of Rh _{2â^'y} Cr _y O ₃ cocatalyst and charge carrier lifetimes over tens of seconds. Chemical Science, 2018, 9, 7546-7555.	7.4	38
148	Anatomy of a Visible Light Activated Photocatalyst for Water Splitting. ACS Catalysis, 2018, 8, 6650-6658.	11.2	24
149	Particulate Photocatalyst Sheets Based on Carbon Conductor Layer for Efficient Z-Scheme Pure-Water Splitting at Ambient Pressure. Journal of the American Chemical Society, 2017, 139, 1675-1683.	13.7	322
150	Application of Flux Method to the Fabrication of Ba ₅ Ta ₄ O ₁₅ , Sr ₅ Ta ₄ O ₇ , and BaTaO ₂ N Polycrystalline Films on Ta Substrates. Crystal Growth and Design, 2017, 17, 1583-1588.	3.0	21
151	Synthesis and Photocatalytic Activity of La ₅ Ti ₂ Cu(S _{1â^'<i>x</i>} Se _{<i>x</i>}) ₅) ₅ O ₇ 71. 265-272.	sub> 3.0	16
152	Photoelectrochemical hydrogen evolution from water on a surface modified CdTe thin film electrode under simulated sunlight. Journal of Materials Chemistry A, 2017, 5, 4486-4492.	10.3	47
153	Enhancement of the H ₂ evolution activity of La ₅ Ti ₂ Cu(S _{1â^'x} Se _x) ₅ O ₇ photocatalysts by coloading Pt and NiS cocatalysts. Journal of Materials Chemistry A, 2017, 5, 6106-6112.	10.3	17
154	Particulate photocatalyst sheets for Z-scheme water splitting: advantages over powder suspension and photoelectrochemical systems and future challenges. Faraday Discussions, 2017, 197, 491-504.	3.2	45
155	An Oxygenâ€Insensitive Hydrogen Evolution Catalyst Coated by a Molybdenumâ€Based Layer for Overall Water Splitting. Angewandte Chemie - International Edition, 2017, 56, 5780-5784.	13.8	106
156	An Oxygenâ€Insensitive Hydrogen Evolution Catalyst Coated by a Molybdenumâ€Based Layer for Overall Water Splitting. Angewandte Chemie, 2017, 129, 5874-5878.	2.0	13
157	Understanding the effect of partial N3â^'-to-O2â^' substitution and H+-to-K+ exchange on photocatalytic water reduction activity of Ruddlesdenâ€"Popper layered perovskite KLaTiO4. Molecular Catalysis, 2017, 432, 250-258.	2.0	22
158	Perovskite $Srla^2$ x Ba x Wla^2 y Ta y (O,N)3: synthesis by thermal ammonolysis and photocatalytic oxygen evolution under visible light. Materials for Renewable and Sustainable Energy, 2017, 6, 1.	3.6	11
159	Progress in the demonstration and understanding of water splitting using particulate photocatalysts. Current Opinion in Electrochemistry, 2017, 2, 148-154.	4.8	33
160	Molten salt flux synthesis of La ₅ Ti ₂ CuS ₅ O ₇ towards elongated single crystallites. Japanese Journal of Applied Physics, 2017, 56, 055503.	1.5	7
161	Development of non-oxide semiconductors as light harvesting materials in photocatalytic and photoelectrochemical water splitting. Dalton Transactions, 2017, 46, 10529-10544.	3.3	62
162	NH ₃ -assisted chloride flux-coating method for direct fabrication of visible-light-responsive SrNbO ₂ N crystal layers. CrystEngComm, 2017, 19, 5532-5541.	2.6	25

#	Article	IF	Citations
163	Investigation of charge separation in particulate oxysulfide and oxynitride photoelectrodes by surface photovoltage spectroscopy. Chemical Physics Letters, 2017, 683, 140-144.	2.6	16
164	Highly Active GaNâ€Stabilized Ta ₃ N ₅ Thinâ€Film Photoanode for Solar Water Oxidation. Angewandte Chemie, 2017, 129, 4817-4821.	2.0	31
165	Highly Active GaNâ€Stabilized Ta ₃ N ₅ Thinâ€Film Photoanode for Solar Water Oxidation. Angewandte Chemie - International Edition, 2017, 56, 4739-4743.	13.8	130
166	Enhancement of Charge Separation and Hydrogen Evolution on Particulate La ₅ Ti ₂ CuS ₅ O ₇ Photocathodes by Surface Modification. Journal of Physical Chemistry Letters, 2017, 8, 375-379.	4.6	17
167	Ultrastable low-bias water splitting photoanodes via photocorrosion inhibition and in situ catalystÂregeneration. Nature Energy, 2017, 2, .	39.5	298
168	Introductory lecture: sunlight-driven water splitting and carbon dioxide reduction by heterogeneous semiconductor systems as key processes in artificial photosynthesis. Faraday Discussions, 2017, 198, 11-35.	3.2	100
169	Synthesis of Concentrated Methylcyclohexane as Hydrogen Carrier through Photoelectrochemical Conversion of Toluene and Water. ChemSusChem, 2017, 10, 659-663.	6.8	11
170	A CoOx-modified SnNb2O6photoelectrode for highly efficient oxygen evolution from water. Chemical Communications, 2017, 53, 629-632.	4.1	33
171	Surface and Interface Engineering for Photoelectrochemical Water Oxidation. Joule, 2017, 1, 290-305.	24.0	156
172	Engaging the flux-grown La1â^'Sr Fe1â^'Ti O3 crystals in visible-light-driven photocatalytic hydrogen generation. International Journal of Hydrogen Energy, 2017, 42, 27024-27033.	7.1	14
173	Overall water splitting by photoelectrochemical cells consisting of (ZnSe) _{0.85} (Culn _{0.7} Ga _{0.3} Se ₂) _{0.15} photocathodes and BiVO ₄ photoanodes. Chemical Communications, 2017, 53, 11674-11677.	4.1	47
174	A particulate (ZnSe) < sub>0.85 < sub> (Culn < sub>0.7 < sub> Ga < sub>0.3 < sub> Se < sub> 2 < sub>) < sub> 0.15 < sub> photocathode modified with CdS and ZnS for sunlight-driven overall water splitting. Journal of Materials Chemistry A, 2017, 5, 21242-21248.	10.3	23
175	Rational Interpretation of Correlated Kinetics of Mobile and Trapped Charge Carriers: Analysis of Ultrafast Carrier Dynamics in BiVO4. Journal of Physical Chemistry C, 2017, 121, 19044-19052.	3.1	39
176	Elucidating the impact of A-site cation change on photocatalytic H $<$ sub $>$ 2 $<$ /sub $>$ and O $<$ sub $>$ 2 $<$ /sub $>$ evolution activities of perovskite-type LnTaON $<$ sub $>$ 2 $<$ /sub $>$ (Ln = La and Pr). Physical Chemistry Chemical Physics, 2017, 19, 22210-22220.	2.8	44
177	Particulate photocatalysts for overall water splitting. Nature Reviews Materials, 2017, 2, .	48.7	1,427
178	Formation of Layerâ€by‣ayer Assembled Cocatalyst Films of S ^{2â^'} â€Stabilized Ni ₃ S ₄ Nanoparticles for Hydrogen Evolution Reaction. ChemNanoMat, 2017, 3, 764-771.	2.8	5
179	CdTe-Based Photoanode for Oxygen Evolution from Water under Simulated Sunlight. Journal of Physical Chemistry Letters, 2017, 8, 5712-5717.	4.6	23
180	<i>Ab initio</i> density functional theory calculation of La ₅ Ti ₂ Cu _{1â^'<i>x</i>} Ag _{<i>x</i>} S ₅ O ₇ Solution semiconductor photocatalysts for water splitting. Journal Physics D: Applied Physics, 2017, 50, 234004.	ub>§olid	3

#	Article	IF	Citations
181	Protonated Oxide, Nitrided, and Reoxidized K ₂ La ₂ Ti ₃ O ₁₀ Crystals: Visible-Light-Induced Photocatalytic Water Oxidation and Fabrication of Their Nanosheets. ACS Sustainable Chemistry and Engineering, 2017, 5, 232-240.	6.7	34
182	Sunlightâ€Driven Overall Water Splitting by the Combination of Surfaceâ€Modified La ₅ Ti ₂ Cu _{O.9} Ag _{O.1} S ₅ O ₇ and BaTaO ₂ N Photoelectrodes. ChemPhotoChem, 2017, 1, 167-172.	3.0	32
183	The challenges of solar hydrogen in chemical industry: how to provide, and how to apply?. Faraday Discussions, 2017, 198, 509-527.	3.2	47
184	On the Special Issue of "Artificial Photosynthesis". Hyomen Kagaku, 2017, 38, 259-259.	0.0	0
185	Efficient hydrogen evolution from water using CdTe photocathodes under simulated sunlight. Journal of Materials Chemistry A, 2017, 5, 13154-13160.	10.3	38
186	The cross-substitution effect of tantalum on the visible-light-driven water oxidation activity of BaNbO ₂ N crystals grown directly by an NH ₃ -assisted flux method. Journal of Materials Chemistry A, 2016, 4, 12807-12817.	10.3	50
187	Simultaneous enhancement of photovoltage and charge transfer in Cu2O-based photocathode using buffer and protective layers. Applied Physics Letters, 2016, 109, .	3.3	33
188	Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight. ChemSusChem, 2016, 9, 61-66.	6.8	112
189	Design and Development of Oxynitride Photocatalysts for Overall Water Splitting under Visible Light Irradiation. ChemElectroChem, 2016, 3, 31-37.	3.4	46
190	Bulky crystalline BiVO ₄ thin films for efficient solar water splitting. Journal of Materials Chemistry A, 2016, 4, 9858-9864.	10.3	40
191	Thin film transfer for the fabrication of tantalum nitride photoelectrodes with controllable layered structures for water splitting. Chemical Science, 2016, 7, 5821-5826.	7.4	26
192	Photoelectrochemical Solar Cells Consisting of a Pt-Modified CdS Photoanode and an Fe(ClO ₄) ₂ /Fe(ClO ₄) ₃ Redox Shuttle in a Nonaqueous Electrolyte. Journal of Physical Chemistry C, 2016, 120, 10781-10790.	3.1	7
193	Rationalizing long-lived photo-excited carriers in photocatalyst (La5Ti2CuS5O7) in terms of one-dimensional carrier transport. Chemical Physics, 2016, 476, 9-16.	1.9	11
194	Two-step synthesis and visible-light-driven photocatalytic water oxidation activity of AW(O,N)3 (A= Sr,) Tj ETQq0	00.rgBT	Oyerlock 10
195	Solar hydrogen production on some water splitting photocatalysts. , 2016, , .		0
196	Flux-boosted coating of idiomorphic CulnS ₂ crystal layers on Mo-coated glass substrate. CrystEngComm, 2016, 18, 3612-3616.	2.6	8
197	Effects of interfacial layers on the photoelectrochemical properties of tantalum nitride photoanodes for solar water splitting. Journal of Materials Chemistry A, 2016, 4, 13837-13843.	10.3	13
198	Highly Efficient Water Oxidation Photoanode Made of Surface Modified LaTiO ₂ N Particles. Small, 2016, 12, 5468-5476.	10.0	42

#	Article	IF	CITATIONS
199	Photoreduced Graphene Oxide as a Conductive Binder to Improve the Water Splitting Activity of Photocatalyst Sheets. Advanced Functional Materials, 2016, 26, 7011-7019.	14.9	62
200	Photoelectrochemical Water Splitting on Particulate ANbO $<$ sub $>$ 2 $<$ /sub $>$ N (A = Ba, Sr) Photoanodes Prepared from Perovskite-Type ANbO $<$ sub $>$ 3 $<$ /sub $>$. Chemistry of Materials, 2016, 28, 6869-6876.	6.7	68
201	Visible Light-Driven Z-Scheme Water Splitting Using Oxysulfide H ₂ Evolution Photocatalysts. Journal of Physical Chemistry Letters, 2016, 7, 3892-3896.	4.6	101
202	Development of Novel Photocatalyst and Cocatalyst Materials for Water Splitting under Visible Light. Bulletin of the Chemical Society of Japan, 2016, 89, 627-648.	3.2	154
203	Photocatalyst Sheets Composed of Particulate LaMg _{1/3} Ta _{2/3} O ₂ N and Mo-Doped BiVO ₄ for Z-Scheme Water Splitting under Visible Light. ACS Catalysis, 2016, 6, 7188-7196.	11.2	79
204	The contrasting effect of the Ta/Nb ratio in (111)-layered B-site deficient hexagonal perovskite Ba ₅ Nb _{4â^x} Ta _x O ₁₅ crystals on visible-light-induced photocatalytic water oxidation activity of their oxynitride derivatives. Dalton Transactions, 2016, 45, 12559-12568.	3.3	24
205	Enhanced Hydrogen Evolution under Simulated Sunlight from Neutral Electrolytes on (ZnSe) _{0.85} (CuIn _{0.7} Ga _{0.3} Se ₂) _{)_{0.15} Photocathodes Prepared by a Bilayer Method. Angewandte Chemie, 2016, 128, 15555-15559.}	2.0	8
206	A miniature solar device for overall water splitting consisting of series-connected spherical silicon solar cells. Scientific Reports, 2016, 6, 24633.	3.3	25
207	Enhanced Hydrogen Evolution under Simulated Sunlight from Neutral Electrolytes on (ZnSe) _{0.85} (Culn _{0.7} Ga _{0.3} Se ₂) _{0.15} Photocathodes Prepared by a Bilayer Method. Angewandte Chemie - International Edition, 2016, 55, 15329-15333.	13.8	38
208	Investigation of the enhanced photocathodic activity of La5Ti2CuS5O7photocathodes in H2evolution by synchrotron radiation nanospectroscopy. Nanoscale, 2016, 8, 18893-18896.	5.6	11
209	A Frontâ€Illuminated Nanostructured Transparent BiVO ₄ Photoanode for >2% Efficient Water Splitting. Advanced Energy Materials, 2016, 6, 1501645.	19.5	313
210	Overall Water Splitting on the Transitionâ€Metal Oxynitride Photocatalyst LaMg _{1/3} Ta _{2/3} O ₂ N over a Large Portion of the Visibleâ€Light Spectrum. Chemistry - A European Journal, 2016, 22, 1854-1862.	3.3	62
211	Effects of flux synthesis on SrNbO ₂ N particles for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2016, 4, 7658-7664.	10.3	42
212	A Novel Photocathode Material for Sunlightâ€Driven Overall Water Splitting: Solid Solution of ZnSe and Cu(In,Ga)Se ₂ . Advanced Functional Materials, 2016, 26, 4570-4577.	14.9	104
213	Application of LaMg1/3Ta2/3O2N as a hydrogen evolution photocatalyst of a photocatalyst sheet for Z-scheme water splitting. Applied Catalysis A: General, 2016, 521, 26-33.	4.3	36
214	Crystal Structure, Electronic Structure, and Photocatalytic Activity of Oxysulfides: La ₂ Ta ₂ ZrS ₂ O ₈ , La ₂ Ta ₂ TiS ₂ O ₈ , and La ₂ Nb ₂ TiS ₂ O ₈ . Inorganic Chemistry, 2016, 55,	4.0	25
215	3674-3679. Synthesis of Nanostructured BaTaO ₂ N Thin Films as Photoanodes for Solar Water Splitting. Journal of Physical Chemistry C, 2016, 120, 15758-15764.	3.1	68
216	Effects of flux treatment on morphology of single-crystalline BaNbO ₂ N particles. CrystEngComm, 2016, 18, 3186-3190.	2.6	18

#	Article	IF	CITATIONS
217	Band engineering of perovskite-type transition metal oxynitrides for photocatalytic overall water splitting. Journal of Materials Chemistry A, 2016, 4, 4544-4552.	10.3	69
218	Effect of particle size of La5Ti2CuS5O7on photoelectrochemical properties in solar hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 4848-4854.	10.3	28
219	New Dion–Jacobson Phase Three-Layer Perovskite CsBa ₂ Ta ₃ O ₁₀ and Its Conversion to Nitrided Ba ₂ Ta ₃ O ₁₀ Nanosheets via a Nitridation–Protonation–Intercalation–Exfoliation Route for Water Splitting. Crystal Growth and Design, 2016, 16, 2302-2308.	3.0	47
220	Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nature Materials, 2016, 15, 611-615.	27.5	1,311
221	A SrTiO (sub) 3 (sub) photoanode prepared by the particle transfer method for oxygen evolution from water with high quantum efficiencies. Chemical Communications, 2016, 52, 5011-5014.	4.1	46
222	Amount of tungsten dopant influencing the photocatalytic water oxidation activity of LaTiO ₂ N crystals grown directly by an NH ₃ -assisted flux method. Catalysis Science and Technology, 2016, 6, 5389-5396.	4.1	25
223	Photocatalytic property of metal ion added SrTiO3 to Overall H2O splitting. Applied Catalysis A: General, 2016, 521, 227-232.	4.3	61
224	Flux-mediated doping of SrTiO ₃ photocatalysts for efficient overall water splitting. Journal of Materials Chemistry A, 2016, 4, 3027-3033.	10.3	224
225	KCl flux-induced growth of isometric crystals of cadmium-containing early transition-metal (Ti 4+ ,) Tj ETQq1 1 0.7 atmosphere for water splitting application. Applied Catalysis B: Environmental, 2016, 182, 626-635.	84314 rgB 20.2	3T /Overlock 30
226	Innentitelbild: A Complex Perovskite-Type Oxynitride: The First Photocatalyst for Water Splitting Operable at up to 600â€nm (Angew. Chem. 10/2015). Angewandte Chemie, 2015, 127, 2900-2900.	2.0	2
227	Ammonia Synthesis Using Ti and Nb Nitride Nanoparticles Prepared by Mesoporous Graphitic C3N4. Bulletin of the Chemical Society of Japan, 2015, 88, 584-590.	3.2	8
228	Efficient Visibleâ€Lightâ€Driven Zâ€Scheme Overall Water Splitting Using a MgTa ₂ O _{6â^'<i>x</i>} N _{<i>y</i>} /TaON Heterostructure Photocatalyst for H ₂ Evolution. Angewandte Chemie - International Edition, 2015, 54, 8498-8501.	13.8	252
229	Design of Oxide Cathode Catalysts for Polymer Electrolyte Fuel Cells. Hyomen Kagaku, 2015, 36, 339-344.	0.0	O
230	A Photoelectrochemical Solar Cell Consisting of a Cadmium Sulfide Photoanode and a Ruthenium–2,2′â€Bipyridine Redox Shuttle in a Nonâ€aqueous Electrolyte. Angewandte Chemie, 2015, 127, 7988-7992.	2.0	3
231	A Photoelectrochemical Solar Cell Consisting of a Cadmium Sulfide Photoanode and a Ruthenium–2,2′â€Bipyridine Redox Shuttle in a Nonâ€aqueous Electrolyte. Angewandte Chemie - International Edition, 2015, 54, 7877-7881.	13.8	11
232	Chalcopyrite Thin Film Materials for Photoelectrochemical Hydrogen Evolution from Water under Sunlight. Coatings, 2015, 5, 293-311.	2.6	21
233	Site-selective photodeposition of Pt on a particulate Sc-La5Ti2CuS5O7 photocathode: evidence for one-dimensional charge transfer. Chemical Communications, 2015, 51, 4302-4305.	4.1	36
234	A novel flux coating method for the fabrication of layers of visible-light-responsive Ta ₃ N ₅ crystals on tantalum substrates. Journal of Materials Chemistry A, 2015, 3, 13946-13952.	10.3	20

#	Article	IF	Citations
235	Z-scheme water splitting using particulate semiconductors immobilized onto metal layers for efficient electron relay. Journal of Catalysis, 2015, 328, 308-315.	6.2	119
236	Recent progress in oxynitride photocatalysts for visible-light-driven water splitting. Science and Technology of Advanced Materials, 2015, 16, 033506.	6.1	146
237	Efficient solar hydrogen production from neutral electrolytes using surface-modified Cu(In,Ga)Se ₂ photocathodes. Journal of Materials Chemistry A, 2015, 3, 8300-8307.	10.3	155
238	Semiconductors for Photocatalytic and Photoelectrochemical Solar Water Splitting., 2015, , 1-56.		5
239	Morphology-sensitive trapping states of photogenerated charge carriers on SrTiO3 particles studied by time-resolved visible to Mid-IR absorption spectroscopy: The effects of molten salt flux treatments. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 313, 168-175.	3.9	64
240	Photocatalytic Water-Splitting Reaction from Catalytic and Kinetic Perspectives. Catalysis Letters, 2015, 145, 95-108.	2.6	210
241	A Complex Perovskite‶ype Oxynitride: The First Photocatalyst for Water Splitting Operable at up to 600 nm. Angewandte Chemie, 2015, 127, 2998-3002.	2.0	63
242	A Complex Perovskiteâ€Type Oxynitride: The First Photocatalyst for Water Splitting Operable at up to 600â€nm. Angewandte Chemie - International Edition, 2015, 54, 2955-2959.	13.8	379
243	Photoelectrochemical Oxidation of Water Using BaTaO ₂ N Photoanodes Prepared by Particle Transfer Method. Journal of the American Chemical Society, 2015, 137, 2227-2230.	13.7	167
244	Positive onset potential and stability of Cu ₂ O-based photocathodes in water splitting by atomic layer deposition of a Ga ₂ O ₃ buffer layer. Energy and Environmental Science, 2015, 8, 1493-1500.	30.8	196
245	Kinetics of Distance-Dependent Recombination between Geminate Charge Carriers by Diffusion under Coulomb Interaction. Journal of Physical Chemistry C, 2015, 119, 5364-5373.	3.1	26
246	Photocatalytic overall water splitting on the perovskite-type transition metal oxynitride CaTaO ₂ N under visible light irradiation. Chemical Communications, 2015, 51, 7191-7194.	4.1	134
247	NH ₃ -Assisted Flux Growth of Cube-like BaTaO ₂ N Submicron Crystals in a Completely Ionized Nonaqueous High-Temperature Solution and Their Water Splitting Activity. Crystal Growth and Design, 2015, 15, 4663-4671.	3.0	95
248	Photocatalytic activity of ZnO/GaP $<$ sub $>$ 1 \hat{a} 2 \times 4/sub $>$ N $<$ sub $>$ 50 \times 4/sub $>$ 60 water splitting. Journal of Materials Chemistry A, 2015, 3, 18083-18089.	10.3	14
249	Fabrication of a Core–Shell-Type Photocatalyst via Photodeposition of Group IV and V Transition Metal Oxyhydroxides: An Effective Surface Modification Method for Overall Water Splitting. Journal of the American Chemical Society, 2015, 137, 9627-9634.	13.7	178
250	NH ₃ -Assisted Flux-Mediated Direct Growth of LaTiO ₂ N Crystallites for Visible-Light-Induced Water Splitting. Journal of Physical Chemistry C, 2015, 119, 15896-15904.	3.1	55
251	Particle suspension reactors and materials for solar-driven water splitting. Energy and Environmental Science, 2015, 8, 2825-2850.	30.8	344
252	Surface Modification of CoO _{<i>x</i>} Loaded BiVO ₄ Photoanodes with Ultrathin <i>pType NiO Layers for Improved Solar Water Oxidation. Journal of the American Chemical Society, 2015, 137, 5053-5060.</i>	13.7	542

#	Article	IF	CITATIONS
253	Mg–Zr Cosubstituted Ta ₃ N ₅ Photoanode for Lower-Onset-Potential Solar-Driven Photoelectrochemical Water Splitting. Journal of the American Chemical Society, 2015, 137, 12780-12783.	13.7	176
254	La ₅ Ti ₂ Cu _{1â^'x} Ag _x S ₅ O ₇ photocathor operating at positive potentials during photoelectrochemical hydrogen evolution under irradiation of up to 710 nm. Energy and Environmental Science, 2015, 8, 3354-3362.	odes 30.8	55
255	Pt/In ₂ S ₃ /CdS/Cu ₂ ZnSnS ₄ Thin Film as an Efficient and Stable Photocathode for Water Reduction under Sunlight Radiation. Journal of the American Chemical Society, 2015, 137, 13691-13697.	13.7	262
256	Photoanodic and photocathodic behaviour of La ₅ Ti ₂ CuS ₅ O ₇ electrodes in the water splitting reaction. Chemical Science, 2015, 6, 4513-4518.	7.4	36
257	Selective CO production by Au coupled ZnTe/ZnO in the photoelectrochemical CO ₂ reduction system. Energy and Environmental Science, 2015, 8, 3597-3604.	30.8	152
258	Durable hydrogen evolution from water driven by sunlight using (Ag,Cu)GaSe ₂ photocathodes modified with CdS and CuGa ₃ Se ₅ . Chemical Science, 2015, 6, 894-901.	7.4	89
259	A Linkerâ€Mediated Selfâ€Assembly Method to Couple Isocharged Nanostructures: Layered Double Hydroxide–CdS Nanohybrids with High Activity for Visibleâ€Lightâ€Induced H ₂ Generation. Chemistry - A European Journal, 2014, 20, 17004-17010.	3.3	32
260	Enhancement of Solar Hydrogen Evolution from Water by Surface Modification with CdS and TiO ₂ on Porous CuInS ₂ Photocathodes Prepared by an Electrodepositionâ€"Sulfurization Method. Angewandte Chemie - International Edition, 2014, 53, 11808-11812.	13.8	181
261	Conversion of Toluene and Water to Methylcyclohexane and Oxygen using Niobiumâ€Doped Strontium Titanate Photoelectrodes. ChemSusChem, 2014, 7, 2690-2694.	6.8	8
262	The Effects of Preparation Conditions for a BaNbO ₂ N Photocatalyst on Its Physical Properties. ChemSusChem, 2014, 7, 2016-2021.	6.8	42
263	Effect of Hydrogen and Oxygen Evolution Cocatalysts on Photocatalytic Activity of GaN:ZnO. European Journal of Inorganic Chemistry, 2014, 2014, 767-772.	2.0	52
264	Hydrogen evolution from water using AgxCulâ^'xGaSe2 photocathodes under visible light. Physical Chemistry Chemical Physics, 2014, 16, 6167.	2.8	66
265	Preparation of BaZrO3–BaTaO2N solid solutions and the photocatalytic activities for water reduction and oxidation under visible light. Journal of Catalysis, 2014, 310, 67-74.	6.2	56
266	Nb-doped TiO2 cathode catalysts for oxygen reduction reaction of polymer electrolyte fuel cells. Catalysis Today, 2014, 233, 181-186.	4.4	25
267	Nanostructured WO ₃ /BiVO ₄ Photoanodes for Efficient Photoelectrochemical Water Splitting. Small, 2014, 10, 3692-3699.	10.0	217
268	Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews, 2014, 43, 7520-7535.	38.1	3,748
269	Interface engineering in nanocarbon–Ta ₂ O ₅ hybrid photocatalysts. Energy and Environmental Science, 2014, 7, 791-796.	30.8	62
270	Enhancement of Photocatalytic Water Oxidation by the Morphological Control of LaTiO ₂ N and Cobalt Oxide Catalysts. Journal of Physical Chemistry C, 2014, 118, 16344-16351.	3.1	82

#	Article	IF	Citations
271	Photoelectrochemical properties of SrNbO ₂ N photoanodes for water oxidation fabricated by the particle transfer method. Faraday Discussions, 2014, 176, 213-223.	3.2	49
272	Electrodeposited Ultrafine TaOx/CB Catalysts for PEFC Cathode Application: Their Oxygen Reduction Reaction Kinetics. Electrochimica Acta, 2014, 149, 76-85.	5.2	17
273	Tuning the properties of visible-light-responsive tantalum (oxy)nitride photocatalysts by non-stoichiometric compositions: a first-principles viewpoint. Physical Chemistry Chemical Physics, 2014, 16, 20548-20560.	2.8	86
274	Improving the photoelectrochemical activity of La ₅ for hydrogen evolution by particle transfer and doping. Energy and Environmental Science, 2014, 7, 2239-2242.	30.8	61
275	Effect of post-treatments on the photocatalytic activity of Sm2Ti2S2O5 for the hydrogen evolution reaction. Physical Chemistry Chemical Physics, 2014, 16, 12051.	2.8	53
276	Particle size dependence on oxygen reduction reaction activity of electrodeposited TaO _x catalysts in acidic media. Physical Chemistry Chemical Physics, 2014, 16, 895-898.	2.8	39
277	Trapped State Sensitive Kinetics in LaTiO ₂ N Solid Photocatalyst with and without Cocatalyst Loading. Journal of the American Chemical Society, 2014, 136, 17324-17331.	13.7	70
278	Platinum and indium sulfide-modified CulnS ₂ as efficient photocathodes for photoelectrochemical water splitting. Chemical Communications, 2014, 50, 8941-8943.	4.1	98
279	Fabrication of photocatalyst panels and the factors determining their activity for water splitting. Catalysis Science and Technology, 2014, 4, 325-328.	4.1	40
280	A conductive ZnO–ZnGaON nanowire-array-on-a-film photoanode for stable and efficient sunlight water splitting. Energy and Environmental Science, 2014, 7, 1693.	30.8	75
281	Critical Role of the Semiconductor–Electrolyte Interface in Photocatalytic Performance for Water-Splitting Reactions Using Ta ₃ N ₅ Particles. Chemistry of Materials, 2014, 26, 4812-4825.	6.7	98
282	Systematical investigation on characteristics of a photocatalyst: tantalum oxynitrides. Microscopy (Oxford, England), 2014, 63, 313-324.	1.5	6
283	Fabrication of highly ordered Ta ₂ O ₅ and Ta ₃ N ₅ nanorod arrays by nanoimprinting and through-mask anodization. Nanotechnology, 2014, 25, 014013.	2.6	14
284	Behavior and Energy States of Photogenerated Charge Carriers on Pt- or CoO _{<i>x</i>} -Loaded LaTiO ₂ N Photocatalysts: Time-Resolved Visible to Mid-Infrared Absorption Study. Journal of Physical Chemistry C, 2014, 118, 23897-23906.	3.1	132
285	Photocatalytic Hydrodechlorination of Trace Carbon Tetrachloride (CCl4) in Aqueous Medium. Industrial & Description of Chemistry Research, 2014, 53, 9600-9607.	3.7	4
286	Enhancing Photocatalytic Activity of LaTiO ₂ N by Removal of Surface Reconstruction Layer. Nano Letters, 2014, 14, 1038-1041.	9.1	129
287	Photoelectrochemical Hydrogen Evolution from Water Using Copper Gallium Selenide Electrodes Prepared by a Particle Transfer Method. Journal of Physical Chemistry C, 2014, 118, 16386-16392.	3.1	86
288	Tethering Metal Ions to Photocatalyst Particulate Surfaces by Bifunctional Molecular Linkers for Efficient Hydrogen Evolution. ChemSusChem, 2014, 7, 2575-2583.	6.8	19

#	Article	IF	CITATIONS
289	Photocatalytic hydrogen production using visible-light-responsive Ta3N5 photocatalyst supported on monodisperse spherical SiO2 particulates. Materials Research Bulletin, 2014, 49, 58-65.	5.2	47
290	Core/Shell Structured La- and Rh-Codoped SrTiO ₃ as a Hydrogen Evolution Photocatalyst in Z-Scheme Overall Water Splitting under Visible Light Irradiation. Chemistry of Materials, 2014, 26, 4144-4150.	6.7	242
291	Production of Hydrogen from Water Using Photocatalysts with Solar Irradiation. Hyomen Kagaku, 2014, 36, 74-79.	0.0	O
292	Photocatalytic hydrogen production of Ta3N5 nanoparticles prepared at different nitridation temperatures. Materials Research Innovations, 2014, 18, S6-439-S6-443.	2.3	1
293	Solar-Driven Z-scheme Water Splitting Using Modified BaZrO ₃ –BaTaO ₂ N Solid Solutions as Photocatalysts. ACS Catalysis, 2013, 3, 1026-1033.	11.2	143
294	Fabrication of an Efficient BaTaO ₂ N Photoanode Harvesting a Wide Range of Visible Light for Water Splitting. Journal of the American Chemical Society, 2013, 135, 10238-10241.	13.7	203
295	Core/Shell Photocatalyst with Spatially Separated Coâ€Catalysts for Efficient Reduction and Oxidation of Water. Angewandte Chemie - International Edition, 2013, 52, 11252-11256.	13.8	254
296	Electrodeposited Ultrafine NbO _{<i>x</i>} , ZrO _{<i>x</i>} , and TaO _{<i>x</i>} Nanoparticles on Carbon Black Supports for Oxygen Reduction Electrocatalysts in Acidic Media. ACS Catalysis, 2013, 3, 2181-2189.	11.2	50
297	Photochemical Water Splitting Using Nanostructured Metal Oxides. , 2013, , 587-614.		3
298	Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. Scientific Reports, 2013, 3, 2681.	3.3	580
299	Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency. Nature Communications, 2013, 4, 2566.	12.8	306
300	Photocatalytic oxygen evolution using BaNbO2N modified with cobalt oxide under photoexcitation up to 740 nm. Energy and Environmental Science, 2013, 6, 3595.	30.8	125
301	Stable Hydrogen Evolution from CdS-Modified CuGaSe ₂ Photoelectrode under Visible-Light Irradiation. Journal of the American Chemical Society, 2013, 135, 3733-3735.	13.7	287
302	Synthesis of tantalum carbide and nitride nanoparticles using a reactive mesoporous template for electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2013, 1, 12606.	10.3	72
303	In-situ observations of flux growth of NaTaO3 crystals on tantalum substrate. CrystEngComm, 2013, 15, 4058.	2.6	5
304	Composite of Rh y Cr2â^'y O3/(Ga1â^'x Zn x)(N1â^'x O x) Photocatalysts with Hydrophobic Polytetrafluoroethylene (PTFE) Membranes for the Fabrication of Novel Reaction Sites for Water Vapor Splitting Under Visible Light. Catalysis Letters, 2013, 143, 150-153.	2.6	4
305	Synthesis and Photocatalytic Activity of Poly(triazine imide). Chemistry - an Asian Journal, 2013, 8, 218-224.	3.3	131
306	Tungsten Carbide Nanoparticles as Efficient Cocatalysts for Photocatalytic Overall Water Splitting. ChemSusChem, 2013, 6, 168-181.	6.8	190

#	Article	IF	CITATIONS
307	Artificial Z-Scheme Constructed with a Supramolecular Metal Complex and Semiconductor for the Photocatalytic Reduction of CO ₂ . Journal of the American Chemical Society, 2013, 135, 4596-4599.	13.7	404
308	Photoelectrochemical properties of LaTiO2N electrodes prepared by particle transfer for sunlight-driven water splitting. Chemical Science, 2013, 4, 1120.	7.4	258
309	Direct Water Splitting into Hydrogen and Oxygen under Visible Light by using Modified TaON Photocatalysts with d ⁰ Electronic Configuration. Chemistry - A European Journal, 2013, 19, 4986-4991.	3.3	160
310	A Redoxâ€Mediatorâ€Free Solarâ€Driven Zâ€Scheme Waterâ€Splitting System Consisting of Modified Ta ₃ N ₅ as an Oxygenâ€Evolution Photocatalyst. Chemistry - A European Journal, 2013, 19, 7480-7486.	3.3	113
311	Fabrication of CaFe ₂ O ₄ /TaON Heterojunction Photoanode for Photoelectrochemical Water Oxidation. Journal of the American Chemical Society, 2013, 135, 5375-5383.	13.7	282
312	Oxidation of Water under Visibleâ&Light Irradiation over Modified BaTaO ₂ N Photocatalysts Promoted by Tungsten Species. Angewandte Chemie - International Edition, 2013, 52, 6488-6491.	13.8	91
313	Highly Dispersed TaO _{<i>x</i>} Nanoparticles Prepared by Electrodeposition as Oxygen Reduction Electrocatalysts for Polymer Electrolyte Fuel Cells. Journal of Physical Chemistry C, 2013, 11635-11646.	3.1	29
314	Physicochemical properties and photocatalytic H2 evolution activity of Rh-doped La2Ti2O7 prepared by molten salt synthesis. Catalysis Science and Technology, 2013, 3, 2098.	4.1	32
315	Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation. Coordination Chemistry Reviews, 2013, 257, 1957-1969.	18.8	246
316	Lanthanoid Oxide Layers on Rhodium-Loaded (Ga _{1–<i>x</i>} Zn _{<i>x</i>})(N _{1–<i>x</i>} O _{<i>x</i>}) Photocatalyst as a Modifier for Overall Water Splitting under Visible-Light Irradiation. Journal of Physical Chemistry C, 2013, 117, 14000-14006.	3.1	52
317	Sulfurization-Assisted Cobalt Deposition on Sm ₂ Fhotocatalyst for Water Oxidation under Visible Light Irradiation. Journal of Physical Chemistry C, 2013, 117, 376-382.	3.1	40
318	Nature of Catalytic Active Sites Present on the Surface of Advanced Bulk Tantalum Mixed Oxide Photocatalysts. ACS Catalysis, 2013, 3, 2920-2929.	11.2	56
319	Titanium Nitride Nanoparticle Electrocatalysts for Oxygen Reduction Reaction in Alkaline Solution. Journal of the Electrochemical Society, 2013, 160, F501-F506.	2.9	35
320	Nano-nitride Cathode Catalysts of Ti, Ta, and Nb for Polymer Electrolyte Fuel Cells: Temperature-Programmed Desorption Investigation of Molecularly Adsorbed Oxygen at Low Temperature. Journal of Physical Chemistry C, 2013, 117, 496-502.	3.1	46
321	Fundamental Bulk/Surface Structureâ€"Photoactivity Relationships of Supported (Rh2â€"yCryO3)/GaN Photocatalysts. Journal of Physical Chemistry Letters, 2013, 4, 3719-3724.	4.6	32
322	Polyol Synthesis of Size-Controlled Rh Nanoparticles and Their Application to Photocatalytic Overall Water Splitting under Visible Light. Journal of Physical Chemistry C, 2013, 117, 2467-2473.	3.1	78
323	Vertically Aligned Ta ₃ N ₅ Nanorod Arrays for Solarâ€Driven Photoelectrochemical Water Splitting. Advanced Materials, 2013, 25, 125-131.	21.0	363
324	Photoelectrodes: Vertically Aligned Ta ₃ N ₅ Nanorod Arrays for Solarâ€Driven Photoelectrochemical Water Splitting (Adv. Mater. 1/2013). Advanced Materials, 2013, 25, 152-152.	21.0	4

#	Article	IF	CITATIONS
325	Fabrication of Photoelectrodes from LaTiO2N Particles for Photoelectrochemical Water Splitting. Bulletin of the Chemical Society of Japan, 2013, 86, 540-546.	3.2	10
326	Oxidation of Water under Visible‣ight Irradiation over Modified BaTaO ₂ N Photocatalysts Promoted by Tungsten Species. Angewandte Chemie, 2013, 125, 6616-6619.	2.0	18
327	Photocatalytic Water Splitting Using Oxynitride and Nitride Semiconductor Powders for Production of Solar Hydrogen. Electrochemical Society Interface, 2013, 22, 57-62.	0.4	34
328	Hydrogen Production by Photocatalytic Water Splitting. Journal of the Japan Petroleum Institute, 2013, 56, 280-287.	0.6	19
329	Modification of Tantalum (V) Nitride with zirconium oxide for photocatalytic hydrogen production under visible light irradiation. , 2012 , , .		0
330	Investigation of Cu-Deficient Copper Gallium Selenide Thin Film as a Photocathode for Photoelectrochemical Water Splitting. Japanese Journal of Applied Physics, 2012, 51, 015802.	1.5	14
331	Kinetic Assessment and Numerical Modeling of Photocatalytic Water Splitting toward Efficient Solar Hydrogen Production. Bulletin of the Chemical Society of Japan, 2012, 85, 647-655.	3.2	69
332	Highly Dispersive Deposition of Pt Nanoparticles on CdS Nanostructures for Photocatalytic Hydrogen Evolution. Chemistry Letters, 2012, 41, 1325-1327.	1.3	9
333	Behavior of Formate Adsorbed on Cu(110) When Exposed to Hydrogen Gas. Chemistry Letters, 2012, 41, 1004-1006.	1.3	0
334	Enhanced Water Oxidation on Ta ₃ N ₅ Photocatalysts by Modification with Alkaline Metal Salts. Journal of the American Chemical Society, 2012, 134, 19993-19996.	13.7	206
335	Modification of TaON with ZrO2 to improve photocatalytic hydrogen evolution activity under visible light: influence of preparation conditions on activity. Catalysis Science and Technology, 2012, 2, 818.	4.1	46
336	Structural and Band Gap Investigation of GaN:ZnO Heterojunction Solid Solution Photocatalyst Probed by Soft X-ray Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 7694-7700.	3.1	50
337	Behavior of Adsorbed Formate in the Presence of Gaseous Formic Acid on Cu(110). Catalysis Letters, 2012, 142, 1197-1201.	2.6	3
338	Effect of post-calcination thermal treatment on acid properties and pores structure of a mesoporous niobium–tungsten oxide. Catalysis Today, 2012, 192, 144-148.	4.4	8
339	Direct fabrication and nitridation of a high-quality NaTaO3 crystal layer onto a tantalum substrate. CrystEngComm, 2012, 14, 7178.	2.6	31
340	Semiconductor monolayer assemblies with oriented crystal faces. CrystEngComm, 2012, 14, 59-62.	2.6	4
341	A titanium-based oxysulfide photocatalyst: La 5 Ti 2 MS 5 O 7 (M = Ag, Cu) for water reduction and oxidation. Physical Chemistry Chemical Physics, 2012, 14, 154 7 5.	2.8	55
342	Highly-dispersed Ta-oxide catalysts prepared by electrodeposition in a non-aqueous plating bath for polymer electrolyte fuel cell cathodes. Chemical Communications, 2012, 48, 9074.	4.1	34

#	Article	IF	Citations
343	Highly Stable Water Splitting on Oxynitride TaON Photoanode System under Visible Light Irradiation. Journal of the American Chemical Society, 2012, 134, 6968-6971.	13.7	378
344	Photoelectrochemical Conversion of Toluene to Methylcyclohexane as an Organic Hydride by Cu ₂ ZnSnS ₄ -Based Photoelectrode Assemblies. Journal of the American Chemical Society, 2012, 134, 2469-2472.	13.7	53
345	Photocatalytic oxidation of water by polymeric carbon nitride nanohybrids made of sustainable elements. Chemical Science, 2012, 3, 443-446.	7.4	246
346	Suppression of the water splitting back reaction on GaN:ZnO photocatalysts loaded with core/shell cocatalysts, investigated using a 1¼-reactor. Journal of Catalysis, 2012, 292, 26-31.	6.2	45
347	Water Oxidation Using a Particulate BaZrO ₃ â€BaTaO ₂ N Solidâ€Solution Photocatalyst That Operates under a Wide Range of Visible Light. Angewandte Chemie - International Edition, 2012, 51, 9865-9869.	13.8	125
348	Preparation of Inorganic Photocatalytic Materials for Overall Water Splitting. ChemCatChem, 2012, 4, 1485-1497.	3.7	92
349	Preparation of calcium tantalum oxynitride from layered oxide precursors to improve photocatalytic activity for hydrogen evolution under visible light. Applied Catalysis B: Environmental, 2012, 128, 72-76.	20.2	29
350	Visible-light-driven nonsacrificial water oxidation over tungsten trioxide powder modified with two different cocatalysts. Energy and Environmental Science, 2012, 5, 8390.	30.8	153
351	Enhanced photoelectrochemical properties of CuGa ₃ Se ₅ thin films for water splitting by the hydrogen mediated co-evaporation method. Energy and Environmental Science, 2012, 5, 6368-6374.	30.8	56
352	Cobalt-Modified Porous Single-Crystalline LaTiO ₂ N for Highly Efficient Water Oxidation under Visible Light. Journal of the American Chemical Society, 2012, 134, 8348-8351.	13.7	382
353	Photocatalytic Water Splitting Using Modified GaN:ZnO Solid Solution under Visible Light: Long-Time Operation and Regeneration of Activity. Journal of the American Chemical Society, 2012, 134, 8254-8259.	13.7	296
354	Nano- and micro-sized TiN as the electrocatalysts for ORR in Li–air fuel cell with alkaline aqueous electrolyte. Journal of Materials Chemistry, 2012, 22, 15549.	6.7	55
355	Composite of TiN Nanoparticles and Fewâ€Walled Carbon Nanotubes and Its Application to the Electrocatalytic Oxygen Reduction Reaction. Chemistry - an Asian Journal, 2012, 7, 286-289.	3.3	32
356	Investigation of cocatalysts on silver-modified Sm2Ti2S2O5 photocatalyst for water reduction and oxidation under visible light irradiation. Catalysis Today, 2012, 185, 253-258.	4.4	21
357	Investigation of Cu-Deficient Copper Gallium Selenide Thin Film as a Photocathode for Photoelectrochemical Water Splitting. Japanese Journal of Applied Physics, 2012, 51, 015802.	1.5	18
358	P-OS7-1 Novel Flux Coating Formation of Visible-Light-Driven Photocatalytic Crystal Thin Films for Contributing to Next-Generation Green Innovation. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2012, 2012.4, 295-296.	0.0	0
359	Gas phase photocatalytic water splitting with Rh2â^'yCryO3/GaN:ZnO in $\hat{l}\frac{1}{4}$ -reactors. Energy and Environmental Science, 2011, 4, 2937.	30.8	71
360	Role and Function of Ruthenium Species as Promoters with TaON-Based Photocatalysts for Oxygen Evolution in Two-Step Water Splitting under Visible Light. Journal of Physical Chemistry C, 2011, 115, 3057-3064.	3.1	174

#	Article	IF	CITATIONS
361	Infrared Spectroscopic Study of the Potential Change at Cocatalyst Particles on Oxynitride Photocatalysts for Water Splitting by Visible Light Irradiation. Journal of Physical Chemistry C, 2011, 115, 23902-23907.	3.1	30
362	Potential-Dependent Recombination Kinetics of Photogenerated Electrons in n- and p-Type GaN Photoelectrodes Studied by Time-Resolved IR Absorption Spectroscopy. Journal of the American Chemical Society, 2011, 133, 11351-11357.	13.7	47
363	(Oxy)nitrides and Oxysulfides as Visible-Light-Driven Photocatalysts for Overall Water Splitting. Green Energy and Technology, 2011, , 487-529.	0.6	7
364	Oxynitride materials for solar water splitting. MRS Bulletin, 2011, 36, 25-31.	3.5	100
365	Synthesis of Structurally Defined Ta ₃ N ₅ Particles by Flux-Assisted Nitridation. Crystal Growth and Design, 2011, 11, 33-38.	3.0	55
366	Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation. Energy and Environmental Science, 2011, 4, 4138.	30.8	312
367	Sulfur-mediated synthesis of carbon nitride: Band-gap engineering and improved functions for photocatalysis. Energy and Environmental Science, 2011, 4, 675-678.	30.8	704
368	Synthesis and Characterization of Semiconductor Tantalum Nitride Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 647-652.	3.1	30
369	A copper and chromium based nanoparticulate oxide as a noble-metal-free cocatalyst for photocatalytic water splitting. Chemical Science, 2011, 2, 1362.	7.4	42
370	Transient absorption study on photogenerated carrier dynamics in visible light responsive photocatalysts GaN:ZnO. , 2011, , .		7
371	Improvement of the photocatalytic hydrogen evolution activity of Sm2Ti2S2O5 under visible light by metal ion additives. Journal of Catalysis, 2011, 280, 1-7.	6.2	31
372	Mineralization of volatile organic compounds (VOCs) over the catalyst CuO–Co3O4–CeO2 and its applications in industrial odor control. Applied Catalysis A: General, 2011, 409-410, 209-214.	4.3	23
373	Synthesis of Ordered Porous Graphitic ₃ N ₄ and Regularly Arranged Ta ₃ N ₅ Nanoparticles by Using Selfâ€Assembled Silica Nanospheres as a Primary Template. Chemistry - an Asian Journal, 2011, 6, 103-109.	3.3	103
374	SrNbO ₂ N as a Water-Splitting Photoanode with a Wide Visible-Light Absorption Band. Journal of the American Chemical Society, 2011, 133, 12334-12337.	13.7	217
375	Surface Nanostructures in Photocatalysts for Visible-Light-Driven Water Splitting. Topics in Current Chemistry, 2011, 303, 95-119.	4.0	17
376	Photoelectrochemical hydrogen production on Cu2ZnSnS4/Mo-mesh thin-film electrodes prepared by electroplating. Chemical Physics Letters, 2011, 501, 619-622.	2.6	103
377	Synthesis and Photocatalytic Activity of Perovskite Niobium Oxynitrides with Wide Visibleâ€Light Absorption Bands. ChemSusChem, 2011, 4, 74-78.	6.8	216
378	Overall Water Splitting under Visible Light through a Twoâ€Step Photoexcitation between TaON and WO ₃ in the Presence of an Iodate–Iodide Shuttle Redox Mediator. ChemSusChem, 2011, 4, 228-237.	6.8	52

#	Article	IF	CITATIONS
379	Editorial: A Current Perspective on Photocatalysis. ChemSusChem, 2011, 4, 155-157.	6.8	4
380	Inside Cover: Overall Water Splitting under Visible Light through a Twoâ€Step Photoexcitation between TaON and WO ₃ in the Presence of an Iodate–lodide Shuttle Redox Mediator (ChemSusChem) Tj E	1 0 0 0 p	rg&I /Overlo
381	Activation of BaTaO ₂ N Photocatalyst for Enhanced Nonâ€Sacrificial Hydrogen Evolution from Water under Visible Light by Forming a Solid Solution with BaZrO ₃ . Chemistry - A European Journal, 2011, 17, 14731-14735.	3.3	60
382	Synthesis and catalytic properties of porous Nb–Mo oxide solid acid. Catalysis Today, 2011, 164, 358-363.	4.4	15
383	Ta3N5 photoanodes for water splitting prepared by sputtering. Thin Solid Films, 2011, 519, 2087-2092.	1.8	136
384	Emission spectroscopy of divalent-cation-doped GaN photocatalysts. Journal of Applied Physics, 2011, 110, 113526.	2.5	1
385	Improvement of Photoelectrochemical Properties by Surface Modification with Iron Oxide on p-Type Si Electrodes for Hydrogen Evolution from Water. Japanese Journal of Applied Physics, 2011, 50, 085702.	1.5	1
386	Toward Visible Light Response: Overall Water Splitting Using Heterogeneous Photocatalysts. Green, 2011, 1, .	0.4	63
387	Simple, Low-cost Preparation of High Surface Area Co3O4–CeO2 Catalysts for Total Decomposition of Toluene. Chemistry Letters, 2010, 39, 26-27.	1.3	3
388	Photocatalytic Water Splitting: Recent Progress and Future Challenges. Journal of Physical Chemistry Letters, 2010, 1, 2655-2661.	4.6	2,306
389	Layered and nanosheet tantalum molybdate as strong solid acid catalysts. Journal of Catalysis, 2010, 270, 206-212.	6.2	44
390	Preparation of Core–Shellâ€Structured Nanoparticles (with a Nobleâ€Metal or Metal Oxide Core and a) Tj ETQ European Journal, 2010, 16, 7750-7759.	q0 0 0 rgB1 3.3	「Overlock I 156
391	Inside Cover: Preparation of Core-Shell-Structured Nanoparticles (with a Noble-Metal or Metal Oxide) Tj ETQq $1\ 1$	0.784314 3.3	rgBT /Overlo 0
392	Synthesis of a Carbon Nitride Structure for Visible‣ight Catalysis by Copolymerization. Angewandte Chemie - International Edition, 2010, 49, 441-444.	13.8	1,312
393	Highly Active Mesoporous Nb–W Oxide Solidâ€Acid Catalyst. Angewandte Chemie - International Edition, 2010, 49, 1128-1132.	13.8	124
394	Photocatalytic Overall Water Splitting Promoted by Two Different Cocatalysts for Hydrogen and Oxygen Evolution under Visible Light. Angewandte Chemie - International Edition, 2010, 49, 4096-4099.	13.8	356
395	Fabrication and photoelectrochemical properties of La5Ti2MS5O7 (M=Ag, Cu) electrodes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 173, 275-278.	3.5	27
396	Niobium-based catalysts prepared by reactive radio-frequency magnetron sputtering and arc plasma methods as non-noble metal cathode catalysts for polymer electrolyte fuel cells. Electrochimica Acta, 2010, 55, 5393-5400.	5.2	44

#	Article	IF	Citations
397	Effect of TiCl4 treatment on the photoelectrochemical properties of LaTiO2N electrodes for water splitting under visible light. Thin Solid Films, 2010, 518, 5855-5859.	1.8	65
398	Isotopic and kinetic assessment of photocatalytic water splitting on Zn-added Ga2O3 photocatalyst loaded with Rh2â^'yCryO3 cocatalyst. Chemical Physics Letters, 2010, 486, 144-146.	2.6	53
399	Photoelectrochemical water splitting using a Cu(In,Ga)Se2 thin film. Electrochemistry Communications, 2010, 12, 851-853.	4.7	156
400	Improved catalytic performance of nitrided Co–Ti and Fe–Ti catalysts for oxygen reduction as non-noble metal cathodes in acidic media. Electrochemistry Communications, 2010, 12, 1177-1179.	4.7	16
401	H ₂ Evolution from Water on Modified Cu ₂ ZnSnS ₄ Photoelectrode under Solar Light. Applied Physics Express, 2010, 3, 101202.	2.4	154
402	Photocatalytic hydrogen evolution on dye-sensitized mesoporous carbon nitride photocatalyst with magnesium phthalocyanine. Physical Chemistry Chemical Physics, 2010, 12, 13020.	2.8	325
403	Synthesis and Characterization of Mesoporous Taâ^'W Oxides as Strong Solid Acid Catalysts. Chemistry of Materials, 2010, 22, 3072-3078.	6.7	59
404	Highly active tantalum(v) nitride nanoparticles prepared from a mesoporous carbon nitride template for photocatalytic hydrogen evolution under visible light irradiation. Journal of Materials Chemistry, 2010, 20, 4295.	6.7	122
405	Facile Fabrication of an Efficient Oxynitride TaON Photoanode for Overall Water Splitting into H ₂ and O ₂ under Visible Light Irradiation. Journal of the American Chemical Society, 2010, 132, 11828-11829.	13.7	437
406	Modified Ta ₃ N ₅ Powder as a Photocatalyst for O ₂ Evolution in a Two-Step Water Splitting System with an Iodate/Iodide Shuttle Redox Mediator under Visible Light. Langmuir, 2010, 26, 9161-9165.	3.5	189
407	Photocatalytic Hydrogen Evolution from Water Using Copper Gallium Sulfide under Visible-Light Irradiation. Journal of Physical Chemistry C, 2010, 114, 11215-11220.	3.1	126
408	Photoluminescence Spectroscopic and Computational Investigation of the Origin of the Visible Light Response of (Ga _{1â^'<i>x</i>} Zn _{<i>x</i>})(N _{1â^'<i>x</i>} O _{<i>x</i>}) Photocatalyst for Overall Water Splitting. Journal of Physical Chemistry C, 2010, 114, 15510-15515.	3.1	68
409	Nanosheets as highly active solid acid catalysts for green chemical syntheses. Energy and Environmental Science, 2010, 3, 82-93.	30.8	167
410	Modification of Sm < inf > 2 < /inf > Ti < inf > 2 < /inf > S < inf > 2 < /inf > O < inf > 5 < /inf > with two cocatalysts for remarkably enhanced hydrogen production from water using visible light. , 2010, , .		0
411	Solid Solution of GaN and ZnO as a Stable Photocatalyst for Overall Water Splitting under Visible Light. Chemistry of Materials, 2010, 22, 612-623.	6.7	346
412	Preparation of Crystallized Mesoporous Ta ₃ N ₅ Assisted by Chemical Vapor Deposition of Tetramethyl Orthosilicate. Chemistry of Materials, 2010, 22, 3854-3861.	6.7	70
413	Efficient Nonsacrificial Water Splitting through Two-Step Photoexcitation by Visible Light using a Modified Oxynitride as a Hydrogen Evolution Photocatalyst. Journal of the American Chemical Society, 2010, 132, 5858-5868.	13.7	660
414	Activation Energies for the Reaction of Ethoxy Species to Ethene over Zeolites. Journal of Physical Chemistry C, 2010, 114, 20107-20113.	3.1	33

#	Article	IF	Citations
415	Nano-sized TiN on carbon black as an efficient electrocatalyst for the oxygen reduction reaction prepared using an mpg-C3N4 template. Chemical Communications, 2010, 46, 7492.	4.1	125
416	Simultaneous photodeposition of rhodium–chromiumnanoparticles on a semiconductor powder: structural characterization and application to photocatalytic overall water splitting. Energy and Environmental Science, 2010, 3, 471-478.	30.8	69
417	Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. Journal of Materials Research, 2010, 25, 3-16.	2.6	1,032
418	Modification of oxysulfides with two nanoparticulate cocatalysts to achieve enhanced hydrogen production from water with visible light. Chemical Communications, 2010, 46, 7313.	4.1	46
419	Enhanced activity of Tantalum (V) nitride nanoparticles for toluene decomposition under visible light irradiation. , $2010, $, .		0
420	Polymerized Complex Synthesis of Niobium- and Zirconium-Based Electrocatalysts for PEFC Cathodes. Journal of the Electrochemical Society, 2010, 157, B240.	2.9	20
421	CdS Nanoparticles Exhibiting Quantum Size Effect by Dispersion on TiO2: Photocatalytic H2 Evolution and Photoelectrochemical Measurements. Bulletin of the Chemical Society of Japan, 2009, 82, 528-535.	3.2	27
422	Recent progress in photocatalysts for overall water splitting under visible light., 2009, , .		2
423	The Effects of Starting Materials in the Synthesis of (Ga _{1â^'<i>x</i>} O _{<i>x</i>}) Solid Solution on Its Photocatalytic Activity for Overall Water Splitting under Visible Light. ChemSusChem, 2009. 2. 336-343.	6.8	46
424	Intercalation-induced Esterification over a Layered Transition Metal Oxide. Topics in Catalysis, 2009, 52, 592-596.	2.8	28
425	A metal-free polymeric photocatalyst for hydrogen production from water under visibleÂlight. Nature Materials, 2009, 8, 76-80.	27.5	10,442
426	Effect of electrolyte addition on activity of (Galâ^'Zn)(Nlâ^'O) photocatalyst for overall water splitting under visible light. Catalysis Today, 2009, 147, 173-178.	4.4	80
427	Evaluation of strong acid properties of layered HNbMoO6 and catalytic activity for Friedel–Crafts alkylation. Catalysis Today, 2009, 142, 267-271.	4.4	34
428	A precursor route to prepare tantalum (V) nitride nanoparticles with enhanced photocatalytic activity for hydrogen evolution under visible light. Applied Catalysis A: General, 2009, 370, 88-92.	4.3	74
429	Synthesis and photocatalytic activity of gallium–zinc–indium mixed oxynitride for hydrogen and oxygen evolution under visible light. Chemical Physics Letters, 2009, 470, 90-94.	2.6	59
430	Nanoparticulate precursor route to fine particles of TaON and ZrO2–TaON solid solution and their photocatalytic activity for hydrogen evolution under visible light. Applied Catalysis A: General, 2009, 357, 206-212.	4.3	71
431	Photocatalytic Overall Water Splitting under Visible Light Using ATaO ₂ N (A = Ca, Sr, Ba) and WO ₃ in a IO ₃ ^{â^'} /I ^{â^'} Shuttle Redox Mediated System. Chemistry of Materials, 2009, 21, 1543-1549.	6.7	294
432	Ordered Mesoporous SBA-15 Type Graphitic Carbon Nitride: A Semiconductor Host Structure for Photocatalytic Hydrogen Evolution with Visible Light. Chemistry of Materials, 2009, 21, 4093-4095.	6.7	392

#	Article	IF	CITATIONS
433	Role and Function of Noble-Metal/Cr-Layer Core/Shell Structure Cocatalysts for Photocatalytic Overall Water Splitting Studied by Model Electrodes. Journal of Physical Chemistry C, 2009, 113, 10151-10157.	3.1	238
434	Needlelike Crystal Growth and Anisotropic Photochemical Reactivity of Ta ₃ N ₅ Synthesized in Vacuo. Journal of Physical Chemistry C, 2009, 113, 17151-17155.	3.1	13
435	Effects of Transition-Metal Composition of Protonated, Layered Nonstoichiometric Oxides H1â°xNb1â°xMo1+xO6 on Heterogeneous Acid Catalysis. Journal of Physical Chemistry C, 2009, 113, 17421-17427.	3.1	28
436	Photocatalytic Activities of Graphitic Carbon Nitride Powder for Water Reduction and Oxidation under Visible Light. Journal of Physical Chemistry C, 2009, 113, 4940-4947.	3.1	690
437	Characterization of HNbWO ₆ and HTaWO ₆ Metal Oxide Nanosheet Aggregates As Solid Acid Catalysts. Journal of Physical Chemistry C, 2009, 113, 7831-7837.	3.1	67
438	Zinc Germanium Oxynitride: Influence of the Preparation Method on the Photocatalytic Properties for Overall Water Splitting. Journal of Physical Chemistry C, 2009, 113, 8526-8531.	3.1	47
439	Self-Activated Catalyst Layer for Partial Hydrogenation of 1,3-Butadiene on a Hydrogen-Precovered Pd(110) Surface. Journal of Physical Chemistry C, 2009, 113, 14872-14878.	3.1	11
440	Aspects of the Water Splitting Mechanism on (Ga _{1â^'<i>x</i>} O _{<i>x</i>}) (N _{1â^'<i>x</i>} O _{<i>x</i>}) Photocatalyst Modified with Rh _{2â^'<i>y</i>} Cr _{<i>y</i>} O ₃ Cocatalyst. Journal of Physical Chemistry C, 2009, 113, 21458-21466.	3.1	143
441	Defect Engineering of Photocatalysts by Doping of Aliovalent Metal Cations for Efficient Water Splitting. Journal of Physical Chemistry C, 2009, 113, 19386-19388.	3.1	240
442	Highly Dispersed Niobium Catalyst on Carbon Black by Polymerized Complex Method as PEFC Cathode Catalyst. Journal of the Electrochemical Society, 2009, 156, B811.	2.9	33
443	Highly dispersed noble-metal/chromia (core/shell) nanoparticles as efficient hydrogen evolution promoters for photocatalytic overall water splitting under visible light. Nanoscale, 2009, 1, 106.	5.6	105
444	Physicochemical Effects on Photocatalytic Water Oxidation by Titanium Fluorooxynitride Powder under Visible Light. Chemistry of Materials, 2009, 21, 2286-2291.	6.7	28
445	Enhancement of photocatalytic activity of zinc-germanium oxynitride solid solution for overall water splitting under visible irradiation. Dalton Transactions, 2009, , 10055.	3.3	44
446	Polymer Semiconductors for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light. Journal of the American Chemical Society, 2009, 131, 1680-1681.	13.7	1,618
447	Amorphous Carbon Bearing Sulfonic Acid Groups in Mesoporous Silica as a Selective Catalyst. Chemistry of Materials, 2009, 21, 186-193.	6.7	136
448	Photoelectrochemical Properties of Crystalline Perovskite Lanthanum Titanium Oxynitride Films under Visible Light. Journal of Physical Chemistry C, 2009, 113, 6156-6162.	3.1	122
449	ATR-SEIRAS Investigation of the Fermi Level of Pt Cocatalyst on a GaN Photocatalyst for Hydrogen Evolution under Irradiation. Journal of the American Chemical Society, 2009, 131, 13218-13219.	13.7	145
450	Optical properties of oxynitride powders. Journal of the Ceramic Society of Japan, 2009, 117, 1-5.	1.1	61

#	Article	IF	CITATIONS
451	Photoresponse of GaN:ZnO Electrode on FTO under Visible Light Irradiation. Bulletin of the Chemical Society of Japan, 2009, 82, 401-407.	3.2	52
452	Structure and electron density of oxysulfide Sm ₂ Ti ₂ S ₂ O _{4.9} , a visible-light-responsive photocatalyst. Acta Crystallographica Section B: Structural Science, 2008, 64, 291-298.	1.8	32
453	Two step water splitting into H2 and O2 under visible light by ATaO2N (A = Ca, Sr, Ba) and WO3 with <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>IO</mml:mtext></mml:mrow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mcow><mml:mco< td=""><td>nrow><m< td=""><td>ml:mh>3</td></m<></td></mml:mco<></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:mcow></mml:msubsup></mml:mrow></mml:math>	nrow> <m< td=""><td>ml:mh>3</td></m<>	ml:mh>3
454	Enhancement of photocatalytic activity of $(Zn1+Ge)(N2O)$ for visible-light-driven overall water splitting by calcination under nitrogen. Chemical Physics Letters, 2008, 457, 134-136.	2.6	67
455	Effect of post-calcination on photocatalytic activity of (Ga1â^'Zn)(N1â^'O) solid solution for overall water splitting under visible light. Journal of Catalysis, 2008, 254, 198-204.	6.2	277
456	Synthesis of Crystallized Mesoporous Tantalum Oxide and Its Photocatalytic Activity for Overall Water Splitting under Ultraviolet Light Irradiation. Chemistry of Materials, 2008, 20, 5361-5367.	6.7	162
457	Crystallization of Mesoporous Metal Oxides. Chemistry of Materials, 2008, 20, 835-847.	6.7	198
458	Efficient Utilization of Nanospace of Layered Transition Metal Oxide HNbMoO ₆ as a Strong, Water-Tolerant Solid Acid Catalyst. Journal of the American Chemical Society, 2008, 130, 7230-7231.	13.7	103
459	Self-Templated Synthesis of Nanoporous CdS Nanostructures for Highly Efficient Photocatalytic Hydrogen Production under Visible Light. Chemistry of Materials, 2008, 20, 110-117.	6.7	919
460	Glucose production from saccharides using layered transition metal oxide and exfoliated nanosheets as a water-tolerant solid acid catalyst. Chemical Communications, 2008, , 5363.	4.1	214
461	Direct deposition of nanoparticulate rhodium–chromium mixed-oxides on a semiconductor powder by band-gap irradiation. Journal of Materials Chemistry, 2008, 18, 3539.	6.7	38
462	Electronic Band Structures and Photochemical Properties of Laâ^'Ga-based Oxysulfides. Journal of Physical Chemistry C, 2008, 112, 11978-11984.	3.1	71
463	Photocatalytic Activity of (Ga ₁₋ <i></i> Reagents, Journal of Physical Chemistry C, 2008, 112, 3447-3452.	>x)
464	Overall water splitting on (oxy)nitride photocatalysts. , 2008, , .		2
465	Surface Modification of TaON with Monoclinic ZrO2 to Produce a Composite Photocatalyst with Enhanced Hydrogen Evolution Activity under Visible Light. Bulletin of the Chemical Society of Japan, 2008, 81, 927-937.	3.2	140
466	Photocatalytic Water Splitting into H2 and O2 over Titanate Pyrochlores Ln2Ti2O7 (Ln = Lanthanoid:) Tj ETQq0 (03 .g BT /0	Overlock 10 Ti
467	Characterization of Spinel Zinc Titanium Nitride Oxide as a Visible Light Driven Photocatalyst. Bulletin of the Chemical Society of Japan, 2008, 81, 1647-1656.	3.2	12
468	Z-scheme Overall Water Splitting on Modified-TaON Photocatalysts under Visible Light (λ<500) Tj ETQq0	0 0 rgBT /	Oyerlock 10

#	Article	IF	CITATIONS
469	Lanthanum–Indium Oxysulfide as a Visible Light Driven Photocatalyst for Water Splitting. Chemistry Letters, 2007, 36, 854-855.	1.3	66
470	Photocatalytic Properties of HCa2Nb3O10 Prepared by Polymerizable Complex Method. Journal of the Ceramic Society of Japan, 2007, 115, 511-513.	1.1	7
471	Photocatalytic Overall Water Splitting on Gallium Nitride Powder. Bulletin of the Chemical Society of Japan, 2007, 80, 1004-1010.	3.2	98
472	Studies on TiN <i>>_x</i> O <i>_y</i> F <i>_z</i> as a Visible-Light-Responsive Photocatalyst. Journal of Physical Chemistry C, 2007, 111, 18264-18270.	3.1	105
473	Zinc Germanium Oxynitride as a Photocatalyst for Overall Water Splitting under Visible Light. Journal of Physical Chemistry C, 2007, 111, 1042-1048.	3.1	262
474	Controlled Synthesis and Assembly of Nanostructured ZnO Architectures by a Solvothermal Soft Chemistry Process. Crystal Growth and Design, 2007, 7, 2742-2748.	3.0	35
475	Crystal Structure and Electron Density of Tantalum Oxynitride, a Visible Light Responsive Photocatalyst. Chemistry of Materials, 2007, 19, 588-593.	6.7	90
476	Origin of Visible Light Absorption in GaN-Rich (Ga ₁ <td><suab1x< s<="" td=""><td>ub88/i>O<i></i></td></suab1x<></td>	<suab1x< s<="" td=""><td>ub88/i>O<i></i></td></suab1x<>	ub 88 /i>O <i></i>
477	Roles of Rh/Cr2O3(Core/Shell) Nanoparticles Photodeposited on Visible-Light-Responsive (Ga1-xZnx)(N1-xOx) Solid Solutions in Photocatalytic Overall Water Splitting. Journal of Physical Chemistry C, 2007, 111, 7554-7560.	3.1	230
478	Photocatalytic Properties of RuO2-Loaded \hat{I}^2 -Ge3N4for Overall Water Splitting. Journal of Physical Chemistry C, 2007, 111, 4749-4755.	3.1	93
479	Modification of (Zn1+xGe)(N2Ox) Solid Solution as a Visible Light Driven Photocatalyst for Overall Water Splitting. Chemistry of Materials, 2007, 19, 2120-2127.	6.7	115
480	Dependence of Activity and Stability of Germanium Nitride Powder for Photocatalytic Overall Water Splitting on Structural Properties. Chemistry of Materials, 2007, 19, 4092-4097.	6.7	54
481	New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light. Journal of Physical Chemistry C, 2007, 111, 7851-7861.	3.1	1,383
482	Dry Autothermal Reaction (ATR) for Synthesis Gas Production on MgAlOX-supported Catalysts. Studies in Surface Science and Catalysis, 2007, 172, 573-574.	1.5	0
483	Partial Oxidation of Methane to Synthesis Gas in Dense Perovskite Membrane Reactor. Studies in Surface Science and Catalysis, 2007, 172, 581-582.	1.5	0
484	Effects of divalent metal ion (Mg2+, Zn2+ and Be2+) doping on photocatalytic activity of ruthenium oxide-loaded gallium nitride for water splitting. Catalysis Today, 2007, 129, 407-413.	4.4	67
485	Preparation of (Ga1â^'xZnx) (N1â^'xOx) solid-solution from ZnGa2O4 and ZnO as a photo-catalyst for overall water splitting under visible light. Applied Catalysis A: General, 2007, 327, 114-121.	4.3	73
486	Visible-light-driven photocatalytic behavior of tantalum-oxynitride and nitride. Research on Chemical Intermediates, 2007, 33, 13-25.	2.7	86

#	Article	IF	CITATIONS
487	Development of Cocatalysts for Photocatalytic Overall Water Splitting on (Ga1â^'x Zn x)(N1â^'x O x) Solid Solution. Catalysis Surveys From Asia, 2007, 11, 145-157.	2.6	53
488	Efficient Overall Water Splitting under Visible-Light Irradiation on (Ga1-xZnx)(N1-xOx) Dispersed with Rhâ^'Cr Mixed-Oxide Nanoparticles:Â Effect of Reaction Conditions on Photocatalytic Activity. Journal of Physical Chemistry B, 2006, 110, 13107-13112.	2.6	218
489	Characterization of Rhâ-'Cr Mixed-Oxide Nanoparticles Dispersed on (Ga1-xZnx)(N1-xOx) as a Cocatalyst for Visible-Light-Driven Overall Water Splitting. Journal of Physical Chemistry B, 2006, 110, 13753-13758.	2.6	180
490	Synthesis of crystallized mesoporous transition metal oxides by silicone treatment of the oxide precursor. Chemical Communications, 2006, , 2188.	4.1	23
491	Acid-Catalyzed Reactions on Flexible Polycyclic Aromatic Carbon in Amorphous Carbon. Chemistry of Materials, 2006, 18, 3039-3045.	6.7	509
492	Effect of 10 MPa Ammonia Treatment on the Activity of Visible Light Responsive Ta3N5Photocatalyst. Chemistry Letters, 2006, 35, 352-353.	1.3	48
493	Overall Water Splitting by RuO2-dispersed Divalent-ion-doped GaN Photocatalysts with d10Electronic Configuration. Chemistry Letters, 2006, 35, 796-797.	1.3	64
494	Crystal Structure Analysis of (Ga _{0.93} Zn _{0.07})(N _{0.90} O _{0.10}) Oxynitride Photocatalyst. Materials Transactions, 2006, 47, 295-297.	1.2	24
495	Photocatalytic Water Splitting to Hydrogen over a Visible Light-Driven LaTaON2 Catalyst. Chinese Journal of Catalysis, 2006, 27, 556-558.	14.0	58
496	Photocatalyst releasing hydrogen from water. Nature, 2006, 440, 295-295.	27.8	2,627
497	Improvement of photocatalytic activity of (Galâ^'xZnx)(Nlâ^'xOx) solid solution for overall water splitting by co-loading Cr and another transition metal. Journal of Catalysis, 2006, 243, 303-308.	6.2	198
498	Noble-Metal/Cr2O3 Core/Shell Nanoparticles as a Cocatalyst for Photocatalytic Overall Water Splitting. Angewandte Chemie - International Edition, 2006, 45, 7806-7809.	13.8	537
499	Overall water splitting using (oxy)nitride photocatalysts. Pure and Applied Chemistry, 2006, 78, 2267-2276.	1.9	76
500	The Use of TiCl4Treatment to Enhance the Photocurrent in a TaON Photoelectrode under Visible Light Irradiation. Chemistry Letters, 2005, 34, 1162-1163.	1.3	79
501	Synthesis of Highly Ordered Mesoporous Tantalum Oxide. Chemistry Letters, 2005, 34, 394-395.	1.3	27
502	Crystal structure and optical properties of (Galâ^'xZnx)(Nlâ^'xOx) oxynitride photocatalyst (x=0.13). Chemical Physics Letters, 2005, 416, 225-228.	2.6	79
503	A Stable and Highly Active Hybrid Mesoporous Solid Acid Catalyst. Advanced Materials, 2005, 17, 1839-1842.	21.0	151
504	Preparation and crystallization characteristics of mesoporous TiO2 and mixed oxides. Journal of Materials Chemistry, 2005, 15, 2035.	6.7	53

#	Article	IF	CITATIONS
505	Triblock copolymer-assisted synthesis of a hybrid mesoporous ethenylene–silica with 2D hexagonal structure and large pores. Journal of Materials Chemistry, 2005, 15, 2362.	6.7	25
506	Tantalum Oxynitride for a Novel Cathode of PEFC. Electrochemical and Solid-State Letters, 2005, 8, A201.	2.2	126
507	Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3–/I– shuttle redox mediator. Chemical Communications, 2005, , 3829.	4.1	300
508	RuO2-Loaded \hat{I}^2 -Ge3N4as a Non-Oxide Photocatalyst for Overall Water Splitting. Journal of the American Chemical Society, 2005, 127, 4150-4151.	13.7	388
509	Characterization of Ruthenium Oxide Nanocluster as a Cocatalyst with (Ga1-xZnx)(N1-xOx) for Photocatalytic Overall Water Splitting. Journal of Physical Chemistry B, 2005, 109, 21915-21921.	2.6	110
510	GaN:ZnO Solid Solution as a Photocatalyst for Visible-Light-Driven Overall Water Splitting. Journal of the American Chemical Society, 2005, 127, 8286-8287.	13.7	1,317
511	Preparation and Characterization of Sodium Tantalate Thin Films by Hydrothermalâ^'Electrochemical Synthesis. Chemistry of Materials, 2005, 17, 2422-2426.	6.7	53
512	Exfoliated HNb3O8Nanosheets as a Strong Protonic Solid Acid. Chemistry of Materials, 2005, 17, 2487-2489.	6.7	117
513	In Situ TEM Observation of Crystallization of Amorphous Ordered Mesoporous Nbâ°'Ta and Mgâ°'Ta Mixed Oxides. Chemistry of Materials, 2005, 17, 632-637.	6.7	24
514	Overall Water Splitting on (Ga1-xZnx)(N1-xOx) Solid Solution Photocatalyst:Â Relationship between Physical Properties and Photocatalytic Activity. Journal of Physical Chemistry B, 2005, 109, 20504-20510.	2.6	384
515	Metal ion and N co-doped TiO2 as a visible-light photocatalyst. Journal of Materials Research, 2004, 19, 2100-2108.	2.6	77
516	Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting. Solid State Ionics, 2004, 172, 591-595.	2.7	194
517	Supermicroporous Niobium Oxide as an Acid Catalyst. Catalysis Letters, 2004, 98, 181-186.	2.6	24
518	Photocatalytic reduction of water by TaON under visible light irradiation. Catalysis Today, 2004, 90, 313-317.	4.4	103
519	Reply to "Comment on â€~A Study of Mechano-Catalysts for Overall Water Splitting'― Journal of Physical Chemistry B, 2004, 108, 19078-19078.	2.6	6
520	Oxysulfides Ln2Ti2S2O5as Stable Photocatalysts for Water Oxidation and Reduction under Visible-Light Irradiation. Journal of Physical Chemistry B, 2004, 108, 2637-2642.	2.6	169
521	Titanium Niobate and Titanium Tantalate Nanosheets as Strong Solid Acid Catalysts. Journal of Physical Chemistry B, 2004, 108, 11549-11555.	2.6	99
522	Electrochemical Behavior of Thin Ta3N5Semiconductor Film. Journal of Physical Chemistry B, 2004, 108, 11049-11053.	2.6	146

#	Article	IF	Citations
523	Synthesis, Mesostructure, and Photocatalysis of a Highly Ordered and Thermally Stable Mesoporous Mg and Ta Mixed Oxide. Chemistry of Materials, 2004, 16, 4304-4310.	6.7	62
524	Porous Single-Crystalline TaON and Ta3N5 Particles. Chemistry of Materials, 2004, 16, 1603-1605.	6.7	92
525	Regiocontrolled Oxidative Coupling Polycondensation of 2,5-Dimethylphenol Induced by Mesoporous Interior. Macromolecules, 2004, 37, 9657-9659.	4.8	25
526	Photocatalytic Activity Enhancing for Titanium Dioxide by Co-doping with Bromine and Chlorine. Chemistry of Materials, 2004, 16, 846-849.	6.7	367
527	Crystallization of an Ordered Mesoporous Nb–Ta Oxide. Angewandte Chemie, 2003, 115, 2484-2487.	2.0	19
528	Crystallization of an Ordered Mesoporous Nb–Ta Oxide. Angewandte Chemie - International Edition, 2003, 42, 2382-2385.	13.8	90
529	TaON and Ta3N5 as new visible light driven photocatalysts. Catalysis Today, 2003, 78, 555-560.	4.4	339
530	Ta3N5and TaON Thin Films on Ta Foil:Â Surface Composition and Stability. Journal of Physical Chemistry B, 2003, 107, 13441-13445.	2.6	121
531	Exfoliated Nanosheets as a New Strong Solid Acid Catalyst. Journal of the American Chemical Society, 2003, 125, 5479-5485.	13.7	247
532	LaTiO2N as a Visible-Light (â‰ g 00 nm)-Driven Photocatalyst (2). Journal of Physical Chemistry B, 2003, 107, 791-797.	2.6	288
533	Novel Synthesis and Photocatalytic Activity of Oxysulfide Sm2Ti2S2O5. Chemistry of Materials, 2003, 15, 4442-4446.	6.7	92
534	Unusual enhancement of H2 evolution by Ru on TaON photocatalyst under visible light irradiation. Chemical Communications, 2003, , 3000.	4.1	166
535	Conduction and Valence Band Positions of Ta2O5, TaON, and Ta3N5by UPS and Electrochemical Methods. Journal of Physical Chemistry B, 2003, 107, 1798-1803.	2.6	917
536	30 Ta3N5 and TaON as novel photocatalysts responding to visible light. Studies in Surface Science and Catalysis, 2003, , 169-172.	1.5	11
537	TiNxOyFzas a Stable Photocatalyst for Water Oxidation in Visible Light (<570 nm). Chemistry Letters, 2003, 32, 196-197.	1.3	133
538	Preparation and Catalytic Application of Transition Metal (Fe, V, or Cu) Oxides Homogeneously Dispersed in the Wall of Mesoporous Nb2O5. Chemistry Letters, 2003, 32, 1034-1035.	1.3	6
539	An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ ≤Tj ETQq1	1,0,7843 4.1	14 rgBT /Ovi
540	Ta3N5as a Novel Visible Light-Driven Photocatalyst (λ < 600 nm). Chemistry Letters, 2002, 31, 736-737.	1.3	377

#	Article	IF	Citations
541	Single-Crystal Particles of Mesoporous Niobiumâ^'Tantalum Mixed Oxide. Chemistry of Materials, 2002, 14, 867-875.	6.7	73
542	Three-Dimensionally Ordered Mesoporous Niobium Oxide. Journal of the American Chemical Society, 2002, 124, 11256-11257.	13.7	120
543	Photoreactions on LaTiO2N under Visible Light Irradiation. Journal of Physical Chemistry A, 2002, 106, 6750-6753.	2.5	443
544	Synthesis of 2D-hexagonally ordered mesoporous niobium and tantalum mixed oxide. Journal of Materials Chemistry, 2002, 12, 1480-1483.	6.7	44
545	Oxysulfide Sm2Ti2S2O5as a Stable Photocatalyst for Water Oxidation and Reduction under Visible Light Irradiation (λ ≤550 nm). Journal of the American Chemical Society, 2002, 124, 13547-13553.	13.7	890
546	(Oxy)nitrides as New Photocatalysts for Water Splitting under Visible Light Irradiation. Electrochemistry, 2002, 70, 463-465.	1.4	74
547	Synthesis and application for overall water splitting of transition metal-mixed mesoporous Ta oxide. Solid State Ionics, 2002, 151, 305-311.	2.7	16
548	Single crystal particles of a mesoporous mixed transition metal oxide with a wormhole structure. Chemical Communications, 2001, , 2118-2119.	4.1	54
549	Mesoporous Tantalum Oxide. 1. Characterization and Photocatalytic Activity for the Overall Water Decomposition. Chemistry of Materials, 2001, 13, 1194-1199.	6.7	229
550	New aspects of heterogeneous photocatalysts for water decomposition. Korean Journal of Chemical Engineering, 2001, 18, 862-866.	2.7	71
551	A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3â^'/lâ^' shuttle redox mediator. Chemical Physics Letters, 2001, 344, 339-344.	2.6	323
552	Photo- and Mechano-Catalytic Overall Water Splitting Reactions to Form Hydrogen and Oxygen on Heterogeneous Catalysts. Bulletin of the Chemical Society of Japan, 2000, 73, 1307-1331.	3.2	316
553	Effect of Chromium Addition for Photocatalytic Overall Water Splitting on Ni–K2La2Ti3O10. Journal of Catalysis, 2000, 196, 362-365.	6.2	92
554	The Synthesis of Photocatalysts Using the Polymerizable-Complex Method. MRS Bulletin, 2000, 25, 27-31.	3.5	77
555	In situ observation of the exchange reaction of formate with molecular formic acid on Ni(110). Journal of Molecular Catalysis A, 1999, 141, 73-82.	4.8	3
556	Synthesis of NiO-loaded KTiNbO5 photocatalysts by a novel polymerizable complex method. Journal of Alloys and Compounds, 1999, 285, 77-81.	5.5	52
557	Short-Lived Reactive Intermediate in the Decomposition of Formate on NiO(111) Surface Observed by Picosecond Temperature Jump. Journal of Physical Chemistry B, 1998, 102, 5951-5954.	2.6	59
558	Preparation of K2La2Ti3O10by Polymerized Complex Method and Photocatalytic Decomposition of Water. Chemistry of Materials, 1998, 10, 72-77.	6.7	161

#	Article	IF	CITATIONS
559	Exchange Reaction of Adsorbed Formate with Gaseous Formic Acid on Ni(110) Studied by Time-Resolved Fourier Transform Infrared Reflection Absorption Spectroscopy. Journal of Physical Chemistry B, 1998, 102, 4401-4403.	2.6	8
560	Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chemical Communications, 1998 , , $357-358$.	4.1	747
561	The IRAS Study of the Exchange Reaction of Formate with Gaseous Formic Acid on Ni(110). Hyomen Kagaku, 1998, 19, 441-445.	0.0	2
562	Photocatalytic Decomposition of Water on Spontaneously Hydrated Layered Perovskites. Chemistry of Materials, 1997, 9, 1063-1064.	6.7	351
563	Isotope Exchange Reaction of Formate with Molecular Hydrogen on Ni(110) by IRAS. The Journal of Physical Chemistry, 1996, 100, 18177-18182.	2.9	17
564	Photocatalytic water splitting on nickel intercalated A4TaxNb6-xO17 (A = K, Rb). Catalysis Today, 1996, 28, 175-182.	4.4	135
565	Visible light-induced photocatalytic behavior of a layered perovskite-type rubidium lead niobate, RbPb2Nb3O10. The Journal of Physical Chemistry, 1993, 97, 1970-1973.	2.9	216
566	A novel series of photocatalysts with an ion-exchangeable layered structure of niobate. Catalysis Letters, 1990, 4, 339-343.	2.6	170
567	Photodecomposition of water and hydrogen evolution from aqueous methanol solution over novel niobate photocatalysts. Journal of the Chemical Society Chemical Communications, 1986, , 356.	2.0	152
568	Mechanism of photocatalytic decomposition of water into H2 and O2 over NiO\$z.sbnd;SrTiO3. Journal of Catalysis, 1986, 102, 92-98.	6.2	380
569	Photocatalytic decomposition of water into hydrogen and oxygen over nickel(II) oxide-strontium titanate (SrTiO3) powder. 1. Structure of the catalysts. The Journal of Physical Chemistry, 1986, 90, 292-295.	2.9	360
570	Study of the photocatalytic decomposition of water vapor over a nickel(II) oxide-strontium titanate (SrTiO3) catalyst. The Journal of Physical Chemistry, 1982, 86, 3657-3661.	2.9	160
571	Photocatalytic decomposition of liquid water on a NiOî—,SrTiO3 catalyst. Chemical Physics Letters, 1982, 92, 433-434.	2.6	159
572	Photocatalytic decomposition of water vapour on an NiO–SrTiO3catalyst. Journal of the Chemical Society Chemical Communications, 1980, , 543-544.	2.0	369
573	Local charge carrier dynamics of a particulate Ga-doped La ₅ Ti ₂ Cu _{0.9} Ag _{0.1} O ₇ S ₅ photocatalyst and the impact of Rh cocatalysts. Physical Chemistry Chemical Physics, 0, , .	2.8	O