Jienan Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1434631/publications.pdf Version: 2024-02-01

Ιτένιλαι Βλα

#	Article	IF	CITATIONS
1	Macromolecular and pore structures of Chinese tectonically deformed coal studied by atomic force microscopy. Fuel, 2015, 139, 94-101.	6.4	211
2	Coalbed methane sorption related to coal deformation structures at different temperatures and pressures. Fuel, 2012, 102, 760-765.	6.4	187
3	Micrometer-scale fractures in coal related to coal rank based on micro-CT scanning and fractal theory. Fuel, 2018, 212, 162-172.	6.4	140
4	The characteristics and origins of cleat in coal from Western North China. International Journal of Coal Geology, 2001, 47, 51-62.	5.0	132
5	The closed pores of tectonically deformed coal studied by small-angle X-ray scattering and liquid nitrogen adsorption. Microporous and Mesoporous Materials, 2016, 224, 245-252.	4.4	120
6	Micro-pores and fractures of coals analysed by field emission scanning electron microscopy and fractal theory. Fuel, 2016, 164, 277-285.	6.4	118
7	Anisotropic characteristics of low-rank coal fractures in the Fukang mining area, China. Fuel, 2018, 211, 182-193.	6.4	110
8	Nanoscale Pores in Coal Related to Coal Rank and Deformation Structures. Transport in Porous Media, 2015, 107, 543-554.	2.6	82
9	Coal microcrystalline structural changes related to methane adsorption/desorption. Fuel, 2019, 239, 13-23.	6.4	77
10	The evolution and formation mechanisms of closed pores in coal. Fuel, 2017, 200, 555-563.	6.4	76
11	Effects of Metamorphism and Deformation on the Coal Macromolecular Structure by Laser Raman Spectroscopy. Energy & Fuels, 2017, 31, 1136-1146.	5.1	74
12	Changes in the anisotropic permeability of low-rank coal under varying effective stress in Fukang mining area, China. Fuel, 2018, 234, 1481-1497.	6.4	74
13	Influences of hydraulic fracturing on microfractures of high-rank coal under different in-situ stress conditions. Fuel, 2021, 287, 119566.	6.4	68
14	Quantitative study of the macromolecular structures of tectonically deformed coal using high-resolution transmission electron microscopy. Journal of Natural Gas Science and Engineering, 2015, 27, 1852-1862.	4.4	65
15	Fractal study of adsorption-pores in pulverized coals with various metamorphism degrees using N2 adsorption, X-ray scattering and image analysis methods. Journal of Petroleum Science and Engineering, 2019, 176, 584-593.	4.2	59
16	Pore structure characteristics of coal-bearing organic shale in Yuzhou coalfield, China using low pressure N 2 adsorption and FESEM methods. Journal of Petroleum Science and Engineering, 2017, 153, 234-243.	4.2	58
17	The role of structure defects in the deformation of anthracite and their influence on the macromolecular structure. Fuel, 2017, 206, 1-9.	6.4	55
18	Relationship between macro-fracture density, P-wave velocity, and permeability of coal. Journal of Applied Geophysics, 2015, 117, 111-117.	2.1	54

Jienan Pan

#	Article	IF	CITATIONS
19	Coal Pores: Methods, Types, and Characteristics. Energy & amp; Fuels, 2021, 35, 7467-7484.	5.1	50
20	Characterizing the shape, size, and distribution heterogeneity of pore-fractures in high rank coal based on X-ray CT image analysis and mercury intrusion porosimetry. Fuel, 2020, 282, 118754.	6.4	48
21	The impacts of stress on the chemical structure of coals: a mini-review based on the recent development of mechanochemistry. Science Bulletin, 2017, 62, 965-970.	9.0	47
22	Potential impact of CO2 injection into coal matrix in molecular terms. Chemical Engineering Journal, 2020, 401, 126071.	12.7	46
23	Fracture variation in high-rank coal induced by hydraulic fracturing using X-ray computer tomography and digital volume correlation. International Journal of Coal Geology, 2022, 252, 103942.	5.0	38
24	Research on Molecular Structure Characteristics of Vitrinite and Inertinite from Bituminous Coal with FTIR, Micro-Raman, and XRD Spectroscopy. Energy & Fuels, 2021, 35, 1322-1335.	5.1	34
25	CO2 adsorption and swelling of coal under constrained conditions and their stage-change relationship. Journal of Natural Gas Science and Engineering, 2020, 76, 103205.	4.4	33
26	Characteristics of multi-scale pore structure of coal and its influence on permeability. Natural Gas Industry B, 2019, 6, 357-365.	3.4	31
27	3D microfracture network and seepage characteristics of low-volatility bituminous coal based on nano-CT. Journal of Natural Gas Science and Engineering, 2020, 83, 103556.	4.4	31
28	Organic-rich siliceous rocks in the upper Permian Dalong Formation (NW middle Yangtze): Provenance, paleoclimate and paleoenvironment. Marine and Petroleum Geology, 2021, 123, 104728.	3.3	30
29	Comparison of coalbed gas generation between Huaibei-Huainan coalfields and Qinshui coal basin based on the tectono-thermal modeling. Science China Earth Sciences, 2011, 54, 1069-1077.	5.2	28
30	Heterogeneity of pore structure of late Paleozoic transitional facies coal-bearing shale in the Southern North China and its main controlling factors. Marine and Petroleum Geology, 2020, 122, 104710.	3.3	23
31	Deformation Mechanisms and Macromolecular Structure Response of Anthracite under Different Stress. Energy & Fuels, 0, , .	5.1	19
32	Stress degradation mechanism of coal macromolecular structure: Insights from molecular dynamics simulation and quantum chemistry calculations. Fuel, 2021, 303, 121258.	6.4	18
33	Micro-nano-scale pore stimulation of coalbed methane reservoirs caused by hydraulic fracturing experiments. Journal of Petroleum Science and Engineering, 2022, 214, 110512.	4.2	18
34	Macromolecular structural response of Wender coal under tensile stress via molecular dynamics. Fuel, 2020, 265, 116938.	6.4	16
35	Organic matter provenance and accumulation of transitional facies coal and mudstone in Yangquan, China: Insights from petrology and geochemistry. Journal of Natural Gas Science and Engineering, 2021, 94, 104076.	4.4	15
36	Examination of the formation phases of coalbed methane reservoirs in the Lu'an mining area (China) based on a fluid inclusion analysis and Ro method. Journal of Natural Gas Science and Engineering, 2015, 22, 73-82.	4.4	13

Jienan Pan

#	Article	IF	CITATIONS
37	Influence of In Situ Stress on Well Test Permeability and Hydraulic Fracturing of the Fanzhuang Block, Qinshui Basin. Energy & Fuels, 2021, 35, 2121-2133.	5.1	13
38	Characterization of Ultramicropores and Analysis of Their Evolution in Tectonically Deformed Coals by Low-Pressure CO ₂ Adsorption, XRD, and HRTEM Techniques. Energy & Fuels, 2020, 34, 9436-9449.	5.1	12
39	Numerical Simulation of Matrix Swelling and Its Effects on Fracture Structure and Permeability for a High-Rank Coal Based on X-ray Micro-CT Image Processing Techniques. Energy & Fuels, 2020, 34, 10801-10809.	5.1	11
40	Effect of the Coal Molecular Structure on the Micropore Volume and the Coalbed Methane Content. Energy & Fuels, 2021, 35, 19437-19447.	5.1	11
41	The fracture anisotropic evolution of different ranking coals in Shanxi Province, China. Journal of Petroleum Science and Engineering, 2019, 182, 106281.	4.2	10
42	Using Raman spectroscopy to evaluate coal maturity: The problem. Fuel, 2022, 312, 122811.	6.4	9
43	The Super-Micropores in Macromolecular Structure of Tectonically Deformed Coal Using High-Resolution Transmission Electron Microscopy. Journal of Nanoscience and Nanotechnology, 2017, 17, 6982-6990.	0.9	8
44	Macromolecular Structure Changes of Tectonically Deformed Coal: Evidence from Coal Pyrolysis, ¹³ C NMR, and XRD Experiments. Energy & Fuels, 2021, 35, 8711-8722.	5.1	5
45	Similar Material Proportioning and Preparation of Ductile Surrounding Rocks for Simulating In Situ Coalbed methane Production from Tectonically Deformed Coals. Rock Mechanics and Rock Engineering, 2022, 55, 5377-5392.	5.4	4
46	Network fracturing technology of hydraulic fracturing in coalbed methane reservoir based on induced stress. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	3
47	Simulation of Gas Production Mechanisms in Shear Deformation of Medium-Rank Coal. ACS Omega, 2022, 7, 342-350.	3.5	3
48	Characteristics of Coal Porosity Changes before and after Triaxial Compression Shear Deformation under Different Confining Pressures. ACS Omega, 2022, 7, 16728-16739.	3.5	3
49	Characterization of coal-based humic acids in relation to their preparation methods. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2020, , 1-11.	2.3	2
50	The impact of tectonic stress chemistry on mineralization processes: A review. Solid Earth Sciences, 2022, 7, 151-166.	1.7	2
51	Effect of Temperature and Pressure on Nanoscale Pores in Closed Coal. Journal of Nanoscience and Nanotechnology, 2021, 21, 567-577.	0.9	0