
Eva-Maria Krämer-Albers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1434210/publications.pdf Version: 2024-02-01

FUA-MADIA KOÃMED-ALREDS

#	Article	IF	CITATIONS
1	Progressive axonopathy when oligodendrocytes lack the myelin protein CMTM5. ELife, 2022, 11, .	2.8	9
2	Extracellular Vesicles at CNS barriers: Mode of action. Current Opinion in Neurobiology, 2022, 75, 102569.	2.0	15
3	Kinetics and Topology of DNA Associated with Circulating Extracellular Vesicles Released during Exercise. Genes, 2021, 12, 522.	1.0	23
4	Extracellular Vesicles in neural cell interaction and CNS homeostasis. FASEB BioAdvances, 2021, 3, 577-592.	1.3	45
5	The power of imaging to understand extracellular vesicle biology in vivo. Nature Methods, 2021, 18, 1013-1026.	9.0	163
6	Bardet-Biedl syndrome proteins modulate the release of bioactive extracellular vesicles. Nature Communications, 2021, 12, 5671.	5.8	23
7	Superfood for axons: Glial exosomes boost axonal energetics by delivery of SIRT2. Neuron, 2021, 109, 3397-3400.	3.8	4
8	Modulating endothelial adhesion and migration impacts stem cell therapies efficacy. EBioMedicine, 2020, 60, 102987.	2.7	10
9	Cell motility and migration as determinants of stem cell efficacy. EBioMedicine, 2020, 60, 102989.	2.7	26
10	Considerations for the Analysis of Small Extracellular Vesicles in Physical Exercise. Frontiers in Physiology, 2020, 11, 576150.	1.3	14
11	Oligodendrocytes Provide Antioxidant Defense Function for Neurons by Secreting Ferritin Heavy Chain. Cell Metabolism, 2020, 32, 259-272.e10.	7.2	98
12	Extracellular vesicles in the oligodendrocyte microenvironment. Neuroscience Letters, 2020, 725, 134915.	1.0	20
13	β1-Integrin– and KV1.3 channel–dependent signaling stimulates glutamate release from Th17 cells. Journal of Clinical Investigation, 2020, 130, 715-732.	3.9	32
14	Oligodendrocytes support axonal transport and maintenance via exosome secretion. PLoS Biology, 2020, 18, e3000621.	2.6	85
15	"Brainstorming― Extracellular Vesicles in Physical Activity and Neuronal Health. Trillium Extracellular Vesicles, 2020, 2, 54-59.	0.1	Ο
16	Oligodendrocytes support axonal transport and maintenance via exosome secretion. , 2020, 18, e3000621.		0
17	Oligodendrocytes support axonal transport and maintenance via exosome secretion. , 2020, 18, e3000621.		0
18	Oligodendrocytes support axonal transport and maintenance via exosome secretion. , 2020, 18, e3000621.		0

#	Article	IF	CITATIONS
19	Oligodendrocytes support axonal transport and maintenance via exosome secretion. , 2020, 18, e3000621.		0
20	Oligodendrocytes support axonal transport and maintenance via exosome secretion. , 2020, 18, e3000621.		0
21	Oligodendrocytes support axonal transport and maintenance via exosome secretion. , 2020, 18, e3000621.		0
22	Oligodendrocytes support axonal transport and maintenance via exosome secretion. , 2020, 18, e3000621.		0
23	Oligodendrocytes support axonal transport and maintenance via exosome secretion. , 2020, 18, e3000621.		0
24	Non-Invasive Approach for Evaluation of Pulmonary Hypertension Using Extracellular Vesicle-Associated Small Non-Coding RNA. Biomolecules, 2019, 9, 666.	1.8	30
25	Serumâ€free media supplements carry miRNAs that coâ€purify with extracellular vesicles. Journal of Extracellular Vesicles, 2019, 8, 1656042.	5.5	51
26	Platelets, endothelial cells and leukocytes contribute to the exerciseâ€ŧriggered release of extracellular vesicles into the circulation. Journal of Extracellular Vesicles, 2019, 8, 1615820.	5.5	163
27	Origin of Extracellular Vesicles Released During Exercise. Medicine and Science in Sports and Exercise, 2019, 51, 654-654.	0.2	0
28	Association Of Circulating Cell-free Dna Released During Physical Exercise With Extracellular Vesicles. Medicine and Science in Sports and Exercise, 2019, 51, 576-576.	0.2	0
29	Exosomes deliver ROS for regeneration. Nature Cell Biology, 2018, 20, 225-226.	4.6	25
30	Dual role of the RNA helicase DDX5 in post-transcriptional regulation of Myelin Basic Protein in oligodendrocytes. Journal of Cell Science, 2018, 131, .	1.2	14
31	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	5.5	6,961
32	Ticket to Ride: Targeting Proteins to Exosomes for Brain Delivery. Molecular Therapy, 2017, 25, 1264-1266.	3.7	11
33	Extracellular vesicles: interneural shuttles of complex messages. Current Opinion in Neurobiology, 2016, 39, 101-107.	2.0	103
34	Extracellular Vesicles: Goodies for the Brain?. Neuropsychopharmacology, 2016, 41, 371-372.	2.8	10
35	Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 2015, 4, 27066.	5.5	3,973
36	Physical exercise induces rapid release of small extracellular vesicles into the circulation. Journal of Extracellular Vesicles, 2015, 4, 28239.	5.5	238

Eva-Maria KrÃ**p**ier-Albers

#	Article	IF	CITATIONS
37	Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. Journal of Extracellular Vesicles, 2015, 4, 30087.	5.5	1,020
38	Release of bulk cellÂfree DNA during physical exercise occurs independent of extracellular vesicles. European Journal of Applied Physiology, 2015, 115, 2271-2280.	1.2	60
39	The NG2 Proteoglycan Protects Oligodendrocyte Precursor Cells against Oxidative Stress via Interaction with OMI/HtrA2. PLoS ONE, 2015, 10, e0137311.	1.1	26
40	Axon-glia interaction and membrane traffic in myelin formation. Frontiers in Cellular Neuroscience, 2014, 7, 284.	1.8	82
41	Emerging Roles of Extracellular Vesicles in the Nervous System. Journal of Neuroscience, 2014, 34, 15482-15489.	1.7	219
42	Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130510.	1.8	232
43	Delivery on call: exosomes as "care packages―from glial cells for stressed neurons. E-Neuroforum, 2013, 19, 85-91.	0.2	1
44	Neurotransmitter-Triggered Transfer of Exosomes Mediates Oligodendrocyte–Neuron Communication. PLoS Biology, 2013, 11, e1001604.	2.6	663
45	A critical role for the cholesterolâ€associated proteolipids PLP and M6B in myelination of the central nervous system. Glia, 2013, 61, 567-586.	2.5	91
46	Extracellular vesicles as mediators of neuron-glia communication. Frontiers in Cellular Neuroscience, 2013, 7, 182.	1.8	298
47	Glial Promoter Selectivity following AAV-Delivery to the Immature Brain. PLoS ONE, 2013, 8, e65646.	1.1	108
48	Lieferung auf Abruf: Exosomen als "Care"-Pakete von Gliazellen für gestresste Neurone. E-Neuroforum, 2013, 19, 146-155.	0.2	0
49	Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation. PLoS Biology, 2012, 10, e1001450.	2.6	1,064
50	Heterogeneous Nuclear Ribonucleoprotein (hnRNP) F Is a Novel Component of Oligodendroglial RNA Transport Granules Contributing to Regulation of Myelin Basic Protein (MBP) Synthesis. Journal of Biological Chemistry, 2012, 287, 1742-1754.	1.6	51
51	Emerging Roles of Exosomes in Neuron–Glia Communication. Frontiers in Physiology, 2012, 3, 119.	1.3	225
52	International Society for Extracellular Vesicles: first annual meeting, April 17–21, 2012: ISEV-2012. Journal of Extracellular Vesicles, 2012, 1, 19995.	5.5	22
53	From axon–glial signalling to myelination: the integrating role of oligodendroglial Fyn kinase. Cellular and Molecular Life Sciences, 2011, 68, 2003-2012.	2.4	100
54	Transport of the Major Myelin Proteolipid Protein Is Directed by VAMP3 and VAMP7. Journal of Neuroscience, 2011, 31, 5659-5672.	1.7	78

#	Article	IF	CITATIONS
55	Cholesterol Regulates the Endoplasmic Reticulum Exit of the Major Membrane Protein P0 Required for Peripheral Myelin Compaction. Journal of Neuroscience, 2009, 29, 6094-6104.	1.7	92
56	Comprehensive analysis of expression, subcellular localization, and cognate pairing of SNARE proteins in oligodendrocytes. Journal of Neuroscience Research, 2009, 87, 1760-1772.	1.3	37
57	Distinct endocytic recycling of myelin proteins promotes oligodendroglial membrane remodeling. Journal of Cell Science, 2008, 121, 834-842.	1.2	80
58	Activation of oligodendroglial Fyn kinase enhances translation of mRNAs transported in hnRNP A2–dependent RNA granules. Journal of Cell Biology, 2008, 181, 579-586.	2.3	168
59	Oligodendrocytes secrete exosomes containing major myelin and stressâ€protective proteins: Trophic support for axons?. Proteomics - Clinical Applications, 2007, 1, 1446-1461.	0.8	423
60	Perturbed Interactions of Mutant Proteolipid Protein/DM20 with Cholesterol and Lipid Rafts in Oligodendroglia: Implications for Dysmyelination in Spastic Paraplegia. Journal of Neuroscience, 2006, 26, 11743-11752.	1.7	71
61	Overexpression of the myelin proteolipid protein leads to accumulation of cholesterol and proteolipid protein in endosomes/lysosomes. Journal of Cell Biology, 2002, 157, 327-336.	2.3	154
62	Process Outgrowth of Oligodendrocytes Is Promoted by Interaction of Fyn Kinase with the Cytoskeletal Protein Tau. Journal of Neuroscience, 2002, 22, 698-707.	1.7	226
63	Membrane traffic in myelinating oligodendrocytes. Microscopy Research and Technique, 2001, 52, 656-671.	1.2	83
64	Assembly of Myelin by Association of Proteolipid Protein with Cholesterol- and Galactosylceramide-Rich Membrane Domains. Journal of Cell Biology, 2000, 151, 143-154.	2.3	264
65	GPI-Anchored Proteins and Glycosphingolipid-Rich Rafts: Platforms for Adhesion and Signaling. Neuroscientist, 2000, 6, 271-284.	2.6	14
66	Compartmentation of Fyn Kinase with Glycosylphosphatidylinositol-anchored Molecules in Oligodendrocytes Facilitates Kinase Activation during Myelination. Journal of Biological Chemistry, 1999, 274, 29042-29049.	1.6	198
67	Novel pluripotential neural progenitor lines exhibiting rapid controlled differentiation to neurotransmitter receptor-expressing neurons and glia. European Journal of Neuroscience, 1998, 10, 3246-3256.	1.2	6
68	Oligodendrocytes Direct Glycosyl Phosphatidylinositol-anchored Proteins to the Myelin Sheath in Glycosphingolipid-rich Complexes. Journal of Biological Chemistry, 1997, 272, 8937-8945.	1.6	108
69	Lines of Murine Oligodendroglial Precursor Cells Immortalized by an ActivatedneuTyrosine Kinase Show Distinct Degrees of Interaction with AxonsIn VitroandIn Vivo. European Journal of Neuroscience, 1995, 7, 1245-1265.	1.2	233
70	Meeting report of the 4th autumn meeting of the German Society of Extracellular Vesicles (GSEV): cutting edge EV research driven by young scientists. , 0, , .		0