Tatsuo Yoshinobu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1434007/publications.pdf

Version: 2024-02-01

193 papers

3,830 citations

36 h-index 51 g-index

194 all docs

194 docs citations

times ranked

194

1803 citing authors

#	Article	IF	CITATIONS
1	Thermallyâ€Drawn Multiâ€Electrode Fibers for Bipolar Electrochemistry and Magnified Electrochemical Imaging. Advanced Materials Technologies, 2022, 7, 2101066.	5.8	6
2	Simultaneous In Situ Imaging of pH and Surface Roughening during the Progress of Crevice Corrosion of Stainless Steel. Sensors, 2022, 22, 2246.	3.8	4
3	Efficient Illumination for a Light-Addressable Potentiometric Sensor. Sensors, 2022, 22, 4541.	3.8	O
4	Miniature multiplexed label-free pH probe in vivo. Biosensors and Bioelectronics, 2021, 174, 112870.	10.1	22
5	Detection of Hydrogen Permeation through Pure Iron with Light-addressable Potentiometric Sensor. ISIJ International, 2021, 61, 1330-1332.	1.4	3
6	Light-addressable potentiometric sensors for cell monitoring and biosensing. Current Opinion in Electrochemistry, 2021, 28, 100727.	4.8	27
7	Polymer-fiber-coupled field-effect sensors for label-free deep brain recordings. PLoS ONE, 2020, 15, e0228076.	2.5	22
8	Estimation of Potential Distribution during Crevice Corrosion through Analysis of l–V Curves Obtained by LAPS. Sensors, 2020, 20, 2873.	3.8	4
9	The pH in Crevice Measured by a Semiconductor Chemical Sensor and Relationship with Crevice Corrosion Behavior of Stainless Steel. Zairyo To Kankyo/ Corrosion Engineering, 2020, 69, 40-48.	0.2	5
10	A Gasâ€Sensitive SPIM Sensor for Detection of Ethanol Using SnO ₂ as Sensing Element (Phys. Status Solidi A 12â•2019). Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1970043.	1.8	0
11	Modeling of the Return Current in a Light-Addressable Potentiometric Sensor. Sensors, 2019, 19, 4566.	3.8	2
12	Sensors and techniques for visualization and characterization of local corrosion. Japanese Journal of Applied Physics, 2019, 58, SB0801.	1.5	3
13	A Gasâ€Sensitive SPIM Sensor for Detection of Ethanol Using SnO 2 as Sensing Element. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800766.	1.8	O
14	Multiâ€Well Sensor Platform Based on a Partially Etched Structure of a Lightâ€Addressable Potentiometric Sensor. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800764.	1.8	2
15	Imaging detection of ethanol vapor by scanning photo-induced impedance microscopy with suspended–gate structure. , 2019, , .		O
16	A Partially Etched Structure of Lightâ€Addressable Potentiometric Sensor for Highâ€Spatialâ€Resolution and Highâ€Speed Chemical Imaging. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700964.	1.8	9
17	(Bio-)chemical Sensing and Imaging by LAPS and SPIM. Springer Series on Chemical Sensors and Biosensors, 2018, , 103-132.	0.5	O
18	Improved spatial resolution of the chemical imaging sensor with a hybrid illumination that suppresses lateral diffusion of photocarriers. Sensors and Actuators B: Chemical, 2018, 273, 1328-1333.	7.8	10

#	Article	IF	Citations
19	A Modified Chemical Imaging Sensor System for Realâ€Time pH Imaging of Accelerated Crevice Corrosion of Stainless Steel. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700963.	1.8	6
20	Lateral resolution enhancement of pulse-driven light-addressable potentiometric sensor. Sensors and Actuators B: Chemical, 2017, 248, 961-965.	7.8	12
21	A high-Q resonance-mode measurement of EIS capacitive sensor by elimination of series resistance. Sensors and Actuators B: Chemical, 2017, 248, 1006-1010.	7.8	9
22	Towards addressability of light-addressable potentiometric sensors: Shunting effect of non-illuminated region and cross-talk. Sensors and Actuators B: Chemical, 2017, 244, 1071-1079.	7.8	16
23	Polymer Composite with Carbon Nanofibers Aligned during Thermal Drawing as a Microelectrode for Chronic Neural Interfaces. ACS Nano, 2017, 11, 6574-6585.	14.6	73
24	Light-Addressable Potentiometric Sensors for Quantitative Spatial Imaging of Chemical Species. Annual Review of Analytical Chemistry, 2017, 10, 225-246.	5 . 4	56
25	A bubble-assisted electroosmotic micropump for a delivery of a droplet in a microfluidic channel combined with a light-addressable potentiometric sensor. Sensors and Actuators B: Chemical, 2017, 248, 993-997.	7.8	18
26	An on-chip electroosmotic micropump with a light- addressable potentiometric sensor. Optoelectronics Letters, 2017, 13, 113-115.	0.8	1
27	Restraining the Diffusion of Photocarriers to Improve the Spatial Resolution of the Chemical Imaging Sensor. Proceedings (mdpi), 2017, 1, 477.	0.2	1
28	A Novel Data Acquisition Method for Visualization of Large pH Changes by Chemical Imaging Sensor. ISIJ International, 2016, 56, 492-494.	1.4	7
29	Light-Addressable Potentiometric Sensor as a Sensing Element in Plug-Based Microfluidic Devices. Micromachines, 2016, 7, 111.	2.9	15
30	Application of electroosmotic micropumps to a microfluidic system combined with a lightâ€addressable potentiometric sensor. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1500-1504.	1.8	8
31	Visualization of the recovery process of defects in a cultured cell layer by chemical imaging sensor. Sensors and Actuators B: Chemical, 2016, 236, 965-969.	7.8	11
32	Light-addressable potentiometric sensor (LAPS) combined with magnetic beads for pharmaceutical screening. Physics in Medicine, 2016, 1, 2-7.	1.3	20
33	Development and Bio-imaging Applications of a Chemical Imaging Sensor. Sensors and Materials, 2016, , 1.	0.5	0
34	Visualization of Defects on a Cultured Cell Layer by Utilizing Chemical Imaging Sensor. Procedia Engineering, 2015, 120, 936-939.	1.2	2
35	Application of chemical imaging sensor to in-situ pH imaging in the vicinity of a corroding metal surface. Electrochimica Acta, 2015, 183, 137-142.	5. 2	21
36	Recent developments of chemical imaging sensor systems based on the principle of the light-addressable potentiometric sensor. Sensors and Actuators B: Chemical, 2015, 207, 926-932.	7.8	52

#	Article	IF	CITATIONS
37	Device Simulation of the Light-addressable Potentiometric Sensor with a Novel Photoexcitation Method for a Higher Spatial Resolution. Procedia Engineering, 2014, 87, 456-459.	1.2	6
38	Theoretical study and simulation of lightâ€addressable potentiometric sensors. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1467-1472.	1.8	20
39	Novel photoexcitation method for light-addressable potentiometric sensor with higher spatial resolution. Applied Physics Express, 2014, 7, 067301.	2.4	17
40	Device simulation of the light-addressable potentiometric sensor for the investigation of the spatial resolution. Sensors and Actuators B: Chemical, 2014, 204, 659-665.	7.8	32
41	High-speed chemical imaging inside a microfluidic channel. Sensors and Actuators B: Chemical, 2014, 194, 521-527.	7.8	39
42	Enhancement of the Spatial Resolution of the Chemical Imaging Sensor by a Hybrid Fiber-Optic Illumination. Procedia Engineering, 2014, 87, 612-615.	1.2	11
43	Chemical imaging of the concentration profile of ion diffusion in a microfluidic channel. Sensors and Actuators B: Chemical, 2013, 189, 240-245.	7.8	30
44	High-speed chemical imaging system based on front-side-illuminated LAPS. Sensors and Actuators B: Chemical, 2013, 182, 315-321.	7.8	17
45	Muscle Tissue Actuator Driven with Light-gated Ion Channels Channelrhodopsin. Procedia CIRP, 2013, 5, 169-174.	1.9	3
46	Visualization of enzymatic reaction in a microfluidic channel using chemical imaging sensor. Electrochimica Acta, 2013, 113, 768-772.	5.2	22
47	Frequency behaviour of lightâ€nddressable potentiometric sensors. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 884-891.	1.8	11
48	Generation of spatial filters by ICA for detecting motor-related oscillatory EEG., 2012, 2012, 1703-6.		3
49	Light-addressable Potentiometric Sensors and Light–addressable Electrodes as a Combined Sensor-and-manipulator Microsystem with High Flexibility. Procedia Engineering, 2012, 47, 890-893.	1.2	4
50	Miniaturized chemical imaging sensor system using an OLED display panel. Sensors and Actuators B: Chemical, 2012, 170, 82-87.	7.8	30
51	High speed and high resolution chemical imaging based on a new type of OLED-LAPS set-up. Sensors and Actuators B: Chemical, 2012, 175, 118-122.	7.8	21
52	Chemical Imaging of ion Diffusion in a Microfluidic Channel. Procedia Engineering, 2012, 47, 886-889.	1.2	0
53	Development and characterisation of a compact light-addressable potentiometric sensor (LAPS) based on the digital light processing (DLP) technology for flexible chemical imaging. Sensors and Actuators B: Chemical, 2012, 170, 34-39.	7.8	45
54	Nutrient concentrationâ€sensitive microorganismâ€based biosensor. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 900-904.	1.8	19

#	Article	IF	CITATIONS
55	Biorobotic Actuator with a Muscle Tissue Driven by a Photostimulation. Lecture Notes in Computer Science, 2012, , 394-395.	1.3	O
56	High speed and high resolution chemical imaging based on a new type of OLED-LAPS set-up. Procedia Engineering, 2011, 25, 346-349.	1.2	3
57	Microfluidic systems with free definable sensor spots by an integrated light-addressable potentiometric sensor. Procedia Engineering, 2011, 25, 791-794.	1.2	1
58	Positive Patterning of Ferritin and Fibronectin Molecules on Silicon by the Atomic Force Microscopic Anodic Oxidation Technique. Journal of Nanoscience and Nanotechnology, 2011, 11, 3808-3813.	0.9	5
59	Field-programmable gate array based controller for multi spot light-addressable potentiometric sensors with integrated signal correction mode. Electrochimica Acta, 2011, 56, 9656-9660.	5.2	17
60	Constant-phase-mode operation of the light-addressable potentiometric sensor. Sensors and Actuators B: Chemical, 2011, 154, 119-123.	7.8	12
61	Determination of the extracellular acidification of <i>Escherichia coli</i> by a lightâ€addressable potentiometric sensor. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 1340-1344.	1.8	26
62	Phase-mode LAPS and its application to chemical imaging. Sensors and Actuators B: Chemical, 2011, 154, 28-32.	7.8	23
63	A high-density multi-point LAPS set-up using a VCSEL array and FPGA control. Sensors and Actuators B: Chemical, 2011, 154, 124-128.	7.8	21
64	Differential Setup of Light-Addressable Potentiometric Sensor with an Enzyme Reactor in a Flow Channel. Japanese Journal of Applied Physics, 2011, 50, 04DL08.	1.5	7
65	A P300-based BCI system for controlling computer cursor movement. , 2011, 2011, 6405-8.		10
66	Phase-Mode Operation of FDM-LAPS. Sensor Letters, 2011, 9, 691-694.	0.4	1
67	Utilising Digital Micro-Mirror Device (DMD) as Scanning Light Source for Light-Addressable Potentiometric Sensors (LAPS). Sensor Letters, 2011, 9, 812-815.	0.4	11
68	Differential Setup of Light-Addressable Potentiometric Sensor with an Enzyme Reactor in a Flow Channel. Japanese Journal of Applied Physics, 2011, 50, 04DL08.	1.5	9
69	A Brain-Computer Interface (BCI) System Based on Auditory Stream Segregation. Journal of Biomechanical Science and Engineering, 2010, 5, 32-40.	0.3	16
70	Miniaturized chemical imaging sensor system using an OLED display panel. Procedia Engineering, 2010, 5, 516-519.	1.2	7
71	Novel combination of digital light processing (DLP) and light-addressable potentiometric sensors (LAPS) for flexible chemical imaging. Procedia Engineering, 2010, 5, 520-523.	1.2	3
72	Image correction method for the chemical imaging sensor. Sensors and Actuators B: Chemical, 2010, 144, 344-348.	7.8	24

#	Article	IF	CITATIONS
73	FPGAâ€based LAPS device for the flexible design of sensing sites on functional interfaces. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 844-849.	1.8	8
74	xBCI: A Generic Platform for Development of an Online BCI System. IEEJ Transactions on Electrical and Electronic Engineering, 2010, 5, 467-473.	1.4	14
75	Chemical image scanner based on FDM-LAPSâ [*] †. Sensors and Actuators B: Chemical, 2009, 137, 533-538.	7.8	31
76	A high-density multi-point LAPS set-up using a VCSEL array and FPGA control. Procedia Chemistry, 2009, 1, 1483-1486.	0.7	7
77	Constant-phase-mode operation of the light-addressable potentiometric sensor. Procedia Chemistry, 2009, 1, 1487-1490.	0.7	5
78	A NIRS-based brain-computer interface system during motor imagery: System development and online feedback training., 2009, 2009, 594-7.		31
79	VISUALIZATION OF ION DISTRIBUTION BY A CHEMICAL IMAGING SENSOR. , 2009, , .		0
80	Method of Menu Selection by Gaze Movement Using AC EOG Signals. IEEJ Transactions on Electronics, Information and Systems, 2009, 129, 1822-1827.	0.2	3
81	Investigation of Methods for Extracting Features Related to Motor Imagery and Resting States in EEG-Based BCI System. IEEJ Transactions on Electronics, Information and Systems, 2009, 129, 1828-1833.	0.2	0
82	Development of Brain-Computer Interface (BCI) System for Bridging Brain and Computer. IFMBE Proceedings, 2009, , 2264-2267.	0.3	0
83	A brain-computer interface (BCI) system based on auditory stream segregation., 2008, 2008, 642-5.		27
84	A Light-Addressable Potentiometric Sensor System for Fast, Simultaneous and Spatial Detection of the Metabolic Activity of Biological Cells., 2007,,.		0
85	Handheld multi-channel LAPS device as a transducer platform for possible biological and chemical multi-sensor applications. Electrochimica Acta, 2007, 53, 305-311.	5.2	69
86	Micropatterning of Si Surface with Protein Molecules by the AFM Anodic Oxidation Method. Electrochemistry, 2006, 74, 131-134.	1.4	6
87	PLD-prepared cadmium sensors based on chalcogenide glassesâ€"ISFET, LAPS and Î⅓ISE semiconductor structures. Sensors and Actuators B: Chemical, 2006, 118, 149-155.	7.8	64
88	"All-in-one―solid-state device based on a light-addressable potentiometric sensor platform. Sensors and Actuators B: Chemical, 2006, 117, 472-479.	7.8	41
89	"LAPS Cardâ€â€"A novel chip card-based light-addressable potentiometric sensor (LAPS). Sensors and Actuators B: Chemical, 2006, 118, 33-40.	7.8	45
90	Molecular fluorescence from H2TBP porphyrin film on Ag substrate excited by tunneling electrons. Ultramicroscopy, 2006, 106, 785-788.	1.9	7

#	Article	IF	Citations
91	Application of Thin-Film Amorphous Silicon to Chemical Imaging. Materials Research Society Symposia Proceedings, 2006, 910, 1.	0.1	2
92	A Semiconductor-based Field-effect Platform for (Bio-)Chemical and Physical sensors: From Capacitive EIS Sensors and LAPS over ISFETs to Nano-scale Devices. Materials Research Society Symposia Proceedings, 2006, 952, 2.	0.1	1
93	Plasmon-enhanced molecular fluorescence from an organic film in a tunnel junction. Applied Physics Letters, 2006, 88, 061901.	3.3	41
94	Development of a handheld 16 channel pen-type LAPS for electrochemical sensing. Sensors and Actuators B: Chemical, 2005, 108, 808-814.	7.8	56
95	Scanning Tunneling Microscope (STM)-Excited Molecular Fluorescence from Porphyrin Thin Films. Japanese Journal of Applied Physics, 2005, 44, L566-L569.	1.5	14
96	The light-addressable potentiometric sensor for multi-ion sensing and imaging. Methods, 2005, 37, 94-102.	3.8	133
97	Fabrication of Thin-Film LAPS with Amorphous Silicon. Sensors, 2004, 4, 163-169.	3.8	31
98	Immobilization of Urease and Cholinesterase on the Surface of Semiconductor Transducer for the Development of Light-Addressable Potentiometric Sensors. Mikrochimica Acta, 2004, 144, 41-50.	5.0	35
99	High resolution LAPS using amorphous silicon as the semiconductor material. Sensors and Actuators B: Chemical, 2004, 103, 436-441.	7.8	55
100	Laser-scanned silicon transducer (LSST) as a multisensor system. Sensors and Actuators B: Chemical, 2004, 103, 457-462.	7.8	16
101	Detection of protein–protein interactions on SiO2/Si surfaces by spectroscopic ellipsometry. Analytical Biochemistry, 2003, 321, 65-70.	2.4	4
102	K+-selective field-effect sensors as transducers for bioelectronic applications. Electrochimica Acta, 2003, 48, 3333-3339.	5.2	43
103	Anion-selective light-addressable potentiometric sensors (LAPS) for the determination of nitrate and sulphate ions. Sensors and Actuators B: Chemical, 2003, 91, 32-38.	7.8	40
104	Portable light-addressable potentiometric sensor (LAPS) for multisensor applications. Sensors and Actuators B: Chemical, 2003, 95, 352-356.	7.8	71
105	Investigation on light-addressable potentiometric sensor as a possible cell–semiconductor hybrid. Biosensors and Bioelectronics, 2003, 18, 1509-1514.	10.1	59
106	AFM fabrication of oxide patterns and immobilization of biomolecules on Si surface. Electrochimica Acta, 2003, 48, 3131-3135.	5.2	53
107	The double K+/Ca2+ sensor based on laser scanned silicon transducer (LSST) for multi-component analysis. Talanta, 2003, 59, 785-795.	5.5	26
108	Nanolithography on SiO2/Si with a scanning tunnelling microscope. Nanotechnology, 2003, 14, R55-R62.	2.6	37

#	Article	IF	CITATIONS
109	Flow-velocity Microsensors Based on Semiconductor Fieldeffect Structures. Sensors, 2003, 3, 202-212.	3.8	8
110	Enhanced Nano-Oxidation on a SC1-Treated Si Surface Using Atomic Force Microscopy. Japanese Journal of Applied Physics, 2002, 41, 4754-4757.	1.5	11
111	Photocurable membranes for ion-selective light-addressable potentiometric sensor. Sensors and Actuators B: Chemical, 2002, 85, 79-85.	7.8	30
112	Light-addressable potentiometric fluoride (Fâ^') sensor. Sensors and Actuators B: Chemical, 2002, 86, 94-97.	7.8	24
113	Lithium sensor based on the laser scanning semiconductor transducer. Analytica Chimica Acta, 2002, 459, 1-9.	5.4	22
114	Semiconductor-based field-effect structures for chemical sensing. , 2001, , .		19
115	Atomic surface characterisation and modification of the layered compounds Bi2Se3, Bi1.9Sb0.1Se3 and Bi1.6Sb0.4Se3. Ultramicroscopy, 2001, 86, 55-61.	1.9	0
116	Nanotribology of Si oxide layers on Si by atomic force microscopy. Ultramicroscopy, 2001, 86, 49-53.	1.9	12
117	Alternative sensor materials for light-addressable potentiometric sensors. Sensors and Actuators B: Chemical, 2001, 76, 388-392.	7.8	39
118	Ion-selective light-addressable potentiometric sensor (LAPS) with chalcogenide thin film prepared by pulsed laser deposition. Sensors and Actuators B: Chemical, 2001, 80, 136-140.	7.8	65
119	Constant-Current-Mode LAPS (CLAPS) for the Detectionof Penicillin. Electroanalysis, 2001, 13, 733-736.	2.9	56
120	Induction of chemical waves by mechanical stimulation in elastic Belousov–Zhabotinsky media. Chemical Physics Letters, 2001, 349, 437-441.	2.6	12
121	A novel low-noise measurement principle for LAPS and its application to faster measurement of pH. Sensors and Actuators B: Chemical, 2001, 74, 112-116.	7.8	8
122	Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS?. Sensors and Actuators B: Chemical, 2001, 78, 237-242.	7.8	92
123	Chemical imaging sensor and its application to biological systems. Electrochimica Acta, 2001, 47, 259-263.	5.2	34
124	Comparative study of chemical waves and temporal oscillations in the Ru(bpy)32+-catalyzed photosensitive Belousovâ€"Zhabotinsky reaction. Chemical Physics Letters, 2000, 328, 214-220.	2.6	3
125	Investigation of pulsed laser-deposited Al2O3 as a high pH-sensitive layer for LAPS-based biosensing applications. Sensors and Actuators B: Chemical, 2000, 71, 169-172.	7.8	38
126	Formation of nano-pyramids of layered materials with AFM. Ultramicroscopy, 2000, 82, 165-170.	1.9	2

#	Article	IF	Citations
127	Scanning tunneling microscopy nanofabrication of electronic industry compatible thermal Si oxide. Ultramicroscopy, 2000, 82, 97-101.	1.9	3
128	Lift-off patterning of thin Au films on Si surfaces with atomic force microscopy. Ultramicroscopy, 2000, 82, 119-123.	1.9	4
129	Application of the pH-Imaging Sensor to Determining the Diffusion Coefficients of Ions in Electrolytic Solutions. Japanese Journal of Applied Physics, 2000, 39, L318-L320.	1.5	28
130	Current-Induced Step Bunching on Vicinal Si(111) Studied by Light Scattering. Japanese Journal of Applied Physics, 2000, 39, L380-L383.	1.5	1
131	Nanotribology of Clean and Oxide-Covered Silicon Surfaces Using Atomic Force Microscopy. Japanese Journal of Applied Physics, 2000, 39, 272-274.	1.5	12
132	Diffusive Propagation of Chemical Waves through a Microgap. Journal of Physical Chemistry A, 2000, 104, 5154-5159.	2.5	17
133	Unidirectional Propagation of Chemical Waves through Microgaps between Zones with Different Excitability. Journal of Physical Chemistry A, 2000, 104, 6602-6608.	2.5	21
134	Nanoscale Patterning of Au Films on Si Surfaces by Atomic Force Microscopy. Japanese Journal of Applied Physics, 1999, 38, 6952-6954.	1.5	5
135	Anisotropic Waves Propagating on Two-Dimensional Arrays of Belousov-Zhabotinsky Oscillators. Japanese Journal of Applied Physics, 1999, 38, L345-L348.	1.5	12
136	Low Energy Electron Stimulated Etching of Thin Si-Oxide Layer in Nanometer Scale Using Scanning Tunneling Microscope. Japanese Journal of Applied Physics, 1999, 38, L252-L254.	1.5	11
137	Fabrication of Nanopit Arrays on Si(111). Japanese Journal of Applied Physics, 1999, 38, 483-486.	1.5	16
138	Controllable Nanopit Formation on Si(001) with a Scanning Tunneling Microscope. Japanese Journal of Applied Physics, 1999, 38, 5236-5238.	1.5	1
139	Experimental Measurement of the Intensity Profiles of a Low-energy Electron Beam Extracted from a Scanning Tunneling Microscope Tip by Field Emission. Japanese Journal of Applied Physics, 1999, 38, 6172-6173.	1.5	4
140	Kinetic roughening in electrodissolution of copper. Physical Review E, 1999, 59, 5133-5136.	2.1	13
141	Application of the chemical imaging sensor to electrophysiological measurement of a neural cell. Sensors and Actuators B: Chemical, 1999, 59, 21-25.	7.8	29
142	Ligation errors in DNA computing. BioSystems, 1999, 52, 181-187.	2.0	16
143	Nano-fabrication on Si oxide/Si surface by using STM: a low energy electron beam stimulated reaction. Applied Surface Science, 1999, 141, 305-312.	6.1	3
144	Nanofabrication on Si oxide with scanning tunneling microscope: Mechanism of the low-energy electron-stimulated reaction. Applied Physics Letters, 1999, 74, 1621-1623.	3.3	21

#	Article	IF	CITATIONS
145	Statistical analysis of step meandering on Si(113) miscut along a low symmetry azimuth. Surface Science, 1999, 419, 128-133.	1.9	2
146	Mesoscopic scanning tunneling and atomic force microscopy study of the misfit-layer compounds (LaSe)xNbSe2 and (PbSe)xNbSe2. Surface Science, 1999, 441, 384-390.	1.9	0
147	STM study of the reactivity of niobium diselenide in air and N2. Applied Surface Science, 1998, 130-132, 623-628.	6.1	6
148	Step Fluctuations on Vicinal Si(113). Physical Review Letters, 1998, 80, 5152-5155.	7.8	42
149	Scanning Tunneling Microscopy Study of Faceting on Vicinal Si(113). Japanese Journal of Applied Physics, 1998, 37, 5870-5874.	1.5	3
150	Solution of the Knapsack Problem by Deoxyribonucleic Acid Computing. Japanese Journal of Applied Physics, 1998, 37, 5839-5841.	1.5	6
151	Scanning Tunneling Microscopy Study of the Misfit Layer Compounds (LaSe)xNbSe2and (PbSe)xNbSe2. Japanese Journal of Applied Physics, 1998, 37, 6157-6160.	1.5	3
152	Application of Chemical Imaging Sensor to Electro Generated pH Distribution. Japanese Journal of Applied Physics, 1998, 37, L353-L355.	1.5	17
153	Low Energy Electron Beam Stimulated Surface Reaction: Selective Etching of SiO 2/Si Using Scanning Tunneling Microscope. Japanese Journal of Applied Physics, 1998, 37, L995-L998.	1.5	24
154	<title>Chemical imaging sensor for observation of microscopic pH distribution</title> ., 1998,,.		0
155	Scanning chemical microscope for the visualization of a microscopic pH distribution Bunseki Kagaku, 1998, 47, 369-373.	0.2	4
156	High Resolution Chemical Imaging Sensor Using Semiconductor Si. IEEJ Transactions on Sensors and Micromachines, 1998, 118, 584-589.	0.1	2
157	Visualization of Chemical Waves in Belousovâ€Zhabotinsky Reaction by Chemical Imaging Sensors. Journal of the Electrochemical Society, 1997, 144, 3919-3921.	2.9	4
158	Fluctuations of a Single Step and Surface Height on Vicinal Surfaces. Journal of the Physical Society of Japan, 1996, 65, 988-991.	1.6	9
159	Simulation of light scattering by a particle on a film-coated substrate using coupled-dipole method. Optical Review, 1996, 3, 497-500.	2.0	0
160	Simulation of light scattering by a particle on a film-coated substrate using coupled-dipole method. Optical Review, 1996, 3, A497.	2.0	0
161	Chemical-imaging sensor using enzyme. Sensors and Actuators B: Chemical, 1996, 32, 23-26.	7.8	47
162	High-resolution pH imaging sensor for microscopic observation of microorganisms. Sensors and Actuators B: Chemical, 1996, 34, 234-239.	7.8	80

#	Article	IF	CITATIONS
163	Redox Potential Imaging Sensor. Japanese Journal of Applied Physics, 1996, 35, L460-L463.	1.5	9
164	Light Scattering by Submicron Particles on Film-Coated Wafers. Japanese Journal of Applied Physics, 1996, 35, L616-L618.	1.5	3
165	High-speed and high-precision chemical-imaging sensor. Sensors and Actuators A: Physical, 1995, 51, 231-235.	4.1	12
166	Observation of microorganism colonies using a scanning-laser-beam pH-sensing microscope. Journal of Bioscience and Bioengineering, 1995, 79, 163-166.	0.9	51
167	Scaling of Si/SiO2 interface roughness. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1995, 13, 1630.	1.6	20
168	Thermal and kinetic surface roughening studied by scanning tunneling microscopy and atomic force microscopy. Phase Transitions, 1995, 53, 235-248.	1.3	5
169	Scaling Analysis of SiO2/Si Interface Roughness by Atomic Force Microscopy. Japanese Journal of Applied Physics, 1994, 33, 383-387.	1.5	50
170	Improvement of Spatial Resolution of a Laser-Scanning pH-Imaging Sensor. Japanese Journal of Applied Physics, 1994, 33, L394-L397.	1.5	70
171	Stable Growth and Kinetic Roughening in Electrochemical Deposition. Physical Review Letters, 1994, 72, 4025-4028.	7.8	81
172	Scanning-laser-beam semiconductor pH-imaging sensor. Sensors and Actuators B: Chemical, 1994, 20, 119-123.	7.8	109
173	Controlled carbonization of Si(001) surface using hydrocarbon radicals in ultrahigh vacuum. Journal of Crystal Growth, 1994, 136, 333-337.	1.5	13
174	Mesoscopic Roughness Characterization of Grown Surfaces by Atomic Force Microscopy. Japanese Journal of Applied Physics, 1994, 33, L67-L69.	1.5	27
175	Dynamic Scaling in Electrochemical Deposition. Materials Research Society Symposia Proceedings, 1994, 367, 159.	0.1	1
176	< title>Recent progress in collisionally excited x-ray laser research at the Institute of Laser Engineering $<$ /title>. , 1994, , .		2
177	Atomic layer epitaxy controlled by surface superstructures in SiC. Thin Solid Films, 1993, 225, 225-229.	1.8	47
178	Self-affine growth of copper electrodeposits. Physical Review B, 1993, 48, 8282-8285.	3.2	38
179	Scaling Analysis of Chemical-Vapor-Deposited Tungsten Films by Atomic Force Microscopy. Japanese Journal of Applied Physics, 1993, 32, L1562-L1564.	1.5	9
180	4Hâ€SiC/6Hâ€SiC interface structures studied by highâ€resolution transmission electron microscopy. Applied Physics Letters, 1993, 63, 2636-2637.	3.3	4

#	Article	IF	CITATIONS
181	Undoped Silicon Layers Grown by Gas Source Molecular Beam Epitaxy Using Si2H6. Japanese Journal of Applied Physics, 1992, 31, L1213-L1215.	1.5	9
182	Cracking of Saturated Hydrocarbon Gas Molecular Beam for Carbonization of Si(001) Surface. Japanese Journal of Applied Physics, 1992, 31, L1580-L1582.	1.5	16
183	Heteroepitaxial growth of single crystalline 3Câ€SiC on Si substrates by gas source molecular beam epitaxy. Journal of Applied Physics, 1992, 72, 2006-2013.	2.5	66
184	Latticeâ€matched epitaxial growth of single crystalline 3Câ€SiC on 6Hâ€SiC substrates by gas source molecular beam epitaxy. Applied Physics Letters, 1992, 60, 824-826.	3.3	32
185	Atomic-Layer Level Control in SiC Crystal Growth Using Gas Source Molecular Beam Epitaxy Shinku/Journal of the Vacuum Society of Japan, 1992, 35, 905-911.	0.2	1
186	Dynamic reflection highâ€energy electron diffraction observation of 3Câ€SiC(001) surface reconstruction under Si2H6beam irradiation. Applied Physics Letters, 1991, 59, 2844-2846.	3.3	44
187	Carbonization Dynamics of Silicon Surfaces By Hydrocarbon Gas Molecular Beams. Materials Research Society Symposia Proceedings, 1991, 220, 575.	0.1	1
188	Atomic Level Control in Crystal Growth Utilizing Reconstruction of the Surface Superstructure. Materials Research Society Symposia Proceedings, 1991, 222, 207.	0.1	0
189	Interface Modification by Hydrocarbon Gas Molecular Beams in Heteroepitaxy of SiC on Si. Japanese Journal of Applied Physics, 1991, 30, L1086-L1088.	1.5	16
190	Atomic level control in gas source MBE growth of cubic SiC. Journal of Crystal Growth, 1990, 99, 520-524.	1.5	45
191	Atomic layer epitaxy of cubic SiC by gas source MBE using surface superstructure. Journal of Crystal Growth, 1989, 95, 461-463.	1.5	59
192	Improvement of sensitivity of the light-addressable potentiometric sensors for the purpose of noninvasive measurement of electrical activity of biological cells. , 0, , .		1
193	Patterned surface as a template for DNA-based nanotechnology. , 0, , .		0