Emilio Casanova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1433472/publications.pdf

Version: 2024-02-01

73 papers

4,837 citations

29 h-index

172457

95266 68 g-index

76 all docs

76 docs citations

76 times ranked 8443 citing authors

#	Article	IF	CITATIONS
1	CB1 Cannabinoid Receptors and On-Demand Defense Against Excitotoxicity. Science, 2003, 302, 84-88.	12.6	1,083
2	Skeletal Muscle-Specific Ablation of raptor, but Not of rictor, Causes Metabolic Changes and Results in Muscle Dystrophy. Cell Metabolism, 2008, 8, 411-424.	16.2	557
3	Heme Oxygenase-1 Drives Metaflammation and Insulin Resistance in Mouse and Man. Cell, 2014, 158, 25-40.	28.9	243
4	Genetic Inactivation of the Transcription Factor TIF-IA Leads to Nucleolar Disruption, Cell Cycle Arrest, and p53-Mediated Apoptosis. Molecular Cell, 2005, 19, 77-87.	9.7	230
5	Inducible site-specific recombination in the brain 1 1Edited by M. Yaniv. Journal of Molecular Biology, 1999, 285, 175-182.	4.2	206
6	A novel Ncr1-Cre mouse reveals the essential role of STAT5 for NK-cell survival and development. Blood, 2011, 117, 1565-1573.	1.4	193
7	Stat3 Is a Negative Regulator of Intestinal Tumor Progression in ApcMin Mice. Gastroenterology, 2010, 138, 1003-1011.e5.	1.3	139
8	Aggressive B-cell lymphomas in patients with myelofibrosis receiving JAK1/2 inhibitor therapy. Blood, 2018, 132, 694-706.	1.4	132
9	Neuronal migration in the murine rostral migratory stream requires serum response factor. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6148-6153.	7.1	131
10	Disruption of STAT3 signalling promotes KRAS-induced lung tumorigenesis. Nature Communications, 2015, 6, 6285.	12.8	124
11	Impairment of hepatic growth hormone and glucocorticoid receptor signaling causes steatosis and hepatocellular carcinoma in mice. Hepatology, 2011, 54, 1398-1409.	7.3	100
12	Afatinib restrains K-RAS–driven lung tumorigenesis. Science Translational Medicine, 2018, 10, .	12.4	99
13	NMDA receptor-dependent GABA _B receptor internalization via CaMKII phosphorylation of serine 867 in GABA _{B1} . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13924-13929.	7.1	98
14	Targeting KRAS Mutant Non-Small-Cell Lung Cancer: Past, Present and Future. International Journal of Molecular Sciences, 2020, 21, 4325.	4.1	84
15	ERâ€based double icre fusion protein allows partial recombination in forebrain. Genesis, 2002, 34, 208-214.	1.6	81
16	Signal Transducer and Activator of Transcription 3 Protects From Liver Injury and Fibrosis in a Mouse Model of Sclerosing Cholangitis. Gastroenterology, 2010, 138, 2499-2508.	1.3	71
17	Expression of Cre recombinase in dopaminoceptive neurons. BMC Neuroscience, 2007, 8, 4.	1.9	68
18	No evidence for a bone phenotype in GPRC6A knockout mice under normal physiological conditions. Journal of Molecular Endocrinology, 2009, 42, 215-223.	2.5	63

#	Article	IF	CITATIONS
19	MTHFD1 interaction with BRD4 links folate metabolism to transcriptional regulation. Nature Genetics, 2019, 51, 990-998.	21.4	61
20	STAT3: Versatile Functions in Non-Small Cell Lung Cancer. Cancers, 2020, 12, 1107.	3.7	60
21	JAK-STAT signaling in hepatic fibrosis. Frontiers in Bioscience - Landmark, 2011, 16, 2794.	3.0	56
22	JAK–STAT inhibition impairs Kâ€RASâ€driven lung adenocarcinoma progression. International Journal of Cancer, 2019, 145, 3376-3388.	5.1	54
23	Floxed allele for conditional inactivation of the GABAB(1)gene. Genesis, 2004, 40, 125-130.	1.6	52
24	Disruption of the growth hormone-Signal transducer and activator of transcription 5-Insulinlike growth factor 1 axis severely aggravates liver fibrosis in a mouse model of cholestasis. Hepatology, 2010, 51, 1319-1326.	7.3	48
25	When reverse genetics meets physiology: the use of siteâ€specific recombinases in mice. FEBS Letters, 2002, 529, 116-121.	2.8	46
26	Heterologous protein production using euchromatin-containing expression vectors in mammalian cells. Nucleic Acids Research, 2015, 43, e102-e102.	14.5	46
27	α Complementation in the Cre recombinase enzyme. Genesis, 2003, 37, 25-29.	1.6	42
28	ETV6/RUNX1 Induces Reactive Oxygen Species and Drives the Accumulation of DNA Damage in B Cells. Neoplasia, 2013, 15, 1292-IN28.	5.3	39
29	Molecular Cloning of α _{1d} â€Adrenergic Receptor and Tissue Distribution of Three α ₁ â€Adrenergic Receptor Subtypes in Mouse. Journal of Neurochemistry, 1995, 65, 2387-2392.	3.9	35
30	Loss of GABAB Receptors in Cochlear Neurons: Threshold Elevation Suggests Modulation of Outer Hair Cell Function by Type II Afferent Fibers. JARO - Journal of the Association for Research in Otolaryngology, 2009, 10, 50-63.	1.8	30
31	The Transcription Factor ZNF683/HOBIT Regulates Human NK-Cell Development. Frontiers in Immunology, 2017, 8, 535.	4.8	30
32	STAT1 is a sexâ€specific tumor suppressor in colitisâ€associated colorectal cancer. Molecular Oncology, 2018, 12, 514-528.	4.6	29
33	Growth hormone resistance exacerbates cholestasisâ€induced murine liver fibrosis. Hepatology, 2015, 61, 613-626.	7.3	27
34	Notch inhibition overcomes resistance to tyrosine kinase inhibitors in EGFR-driven lung adenocarcinoma. Journal of Clinical Investigation, 2019, 130, 612-624.	8.2	27
35	Bacterial artificial chromosomes improve recombinant protein production in mammalian cells. BMC Biotechnology, 2009, 9, 3.	3.3	26
36	IDO1+ Paneth cells promote immune escape of colorectal cancer. Communications Biology, 2020, 3, 252.	4.4	26

#	Article	IF	CITATIONS
37	Generation of a conditional allele of the CBP gene in mouse. Genesis, 2004, 40, 82-89.	1.6	24
38	Myeloid <i>STAT3</i> promotes formation of colitis-associated colorectal cancer in mice. Oncolmmunology, 2015, 4, e998529.	4.6	24
39	Genetically modified mouse models of cancer invasion and metastasis. Drug Discovery Today: Disease Models, 2011, 8, 67-74.	1.2	23
40	Exploration of BAC versus plasmid expression vectors in recombinant CHO cells. Applied Microbiology and Biotechnology, 2013, 97, 4049-4054.	3.6	22
41	Epidermal growth factor signaling protects from cholestatic liver injury and fibrosis. Journal of Molecular Medicine, 2017, 95, 109-117.	3.9	21
42	Recent advances in recombinant protein production. Bioengineered, 2013, 4, 258-261.	3.2	20
43	STAT3 \hat{I}^2 is a tumor suppressor in acute myeloid leukemia. Blood Advances, 2019, 3, 1989-2002.	5.2	20
44	Identification of a cyclic adenosine $3\hat{a}\in ^2$, $5\hat{a}\in ^2$ -monophosphate-dependent protein kinase phosphorylation site in the carboxy terminal tail of human D1 dopamine receptor. Neuroscience Letters, 1995, 188, 183-186.	2.1	19
45	Maintenance therapy with histamine plus IL-2 induces a striking expansion of two CD56bright NK cell subpopulations in patients with acute myeloid leukemia and supports their activation. Oncotarget, 2016, 7, 46466-46481.	1.8	19
46	Non-blocking modulation contributes to sodium channel inhibition by a covalently attached photoreactive riluzole analog. Scientific Reports, 2018, 8, 8110.	3.3	16
47	Identification of four splice variants of the mouse stress-activated protein kinase JNK/SAPK α-isoform. NeuroReport, 1996, 7, 1320-1324.	1.2	15
48	A Probasinâ€MerCreMer BAC allows inducible recombination in the mouse prostate. Genesis, 2009, 47, 757-764.	1.6	15
49	A mouse model to identify cooperating signaling pathways in cancer. Nature Methods, 2012, 9, 897-900.	19.0	15
50	Lactotransferrin-Cre reporter mice trace neutrophils, monocytes/macrophages and distinct subtypes of dendritic cells. Haematologica, 2014, 99, 1006-1015.	3.5	15
51	A mouse model for visualization of GABA _B receptors. Genesis, 2009, 47, 595-602.	1.6	13
52	<scp>AKT</scp> 3 drives adenoid cystic carcinoma development in salivary glands. Cancer Medicine, 2018, 7, 445-453.	2.8	13
53	The glucocorticoid receptor associates with RAS complexes to inhibit cell proliferation and tumor growth. Science Signaling, 2022, 15, eabm4452.	3.6	11
54	Down-regulation of A20 promotes immune escape of lung adenocarcinomas. Science Translational Medicine, 2021, 13, .	12.4	10

#	Article	IF	CITATIONS
55	The Use of Bacterial Artificial Chromosomes for Recombinant Protein Production in Mammalian Cell Lines. Methods in Molecular Biology, 2012, 824, 581-593.	0.9	9
56	Differential effect of chronic ethanol treatment on barbiturate and steroid modulation of muscimol-binding to rat brain cortex. Neuroscience Letters, 1993, 158, 83-86.	2.1	8
57	ΦC31-mediated cassette exchange into a bacterial artificial chromosome. BioTechniques, 2007, 43, 659-664.	1.8	7
58	Powerful expression in Chinese Hamster Ovary cells using bacterial artificial chromosomes: parameters influencing productivity. BMC Proceedings, 2013, 7, .	1.6	7
59	Efficient production of recombinant secretory IgA against Clostridium difficile toxins in CHO-K1 cells. Journal of Biotechnology, 2021, 331, 1-13.	3.8	7
60	Modeling Cancer Using Genetically Engineered Mice. Methods in Molecular Biology, 2015, 1267, 3-18.	0.9	7
61	Immunodetection of serotonin transporter from mouse brain. NeuroReport, 1995, 6, 2353-2356.	1.2	6
62	A mouse tool for conditional mutagenesis in ovarian granulosa cells. Genesis, 2010, 48, 612-617.	1.6	5
63	Validation of an enzyme-linked immunosorbent assay (ELISA) for quantification of endostatin levels in mice as a biomarker of developing glomerulonephritis. PLoS ONE, 2019, 14, e0220935.	2.5	5
64	Orthotopic Transplantation of Syngeneic Lung Adenocarcinoma Cells to Study PD-L1 Expression. Journal of Visualized Experiments, 2019, , .	0.3	4
65	Cloning of chicken and mouse $\hat{l}\pm 1b$ adrenergic receptor. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1396, 263-266.	2.4	3
66	Unexpected oncosuppressive role for STAT3 in KRAS-induced lung tumorigenesis. Molecular and Cellular Oncology, 2016, 3, e1036199.	0.7	3
67	A Mouse Model to Assess STAT3 and STAT5A/B Combined Inhibition in Health and Disease Conditions. Cancers, 2019, 11, 1226.	3.7	3
68	Discovery of the cyclotide caripe 11 as a ligand of the cholecystokinin-2 receptor. Scientific Reports, 2022, 12, .	3.3	3
69	Phosphorylation of the Third Intracellular Loop of the Mouse \hat{l}_\pm 1b -Adrenergic Receptor by cAMP-dependent Protein Kinase. Brain Research Bulletin, 1997, 42, 427-430.	3.0	2
70	Analysis of splicing of four mouse JNK/SAPKα variants. NeuroReport, 2000, 11, 305-309.	1.2	2
71	Construction of a conditional allele of RSK-B/MSK2 in the mouse. Genesis, 2002, 32, 158-160.	1.6	2
72	Breaking bad family ties: Pan-ERBB blockers inhibit KRAS driven lung tumorigenesis. Molecular and Cellular Oncology, 2018, 5, e1513724.	0.7	2

#	Article	IF	CITATIONS
73	Characterization of the promoter of the mouse c-Jun NH2-terminal/stress-activated protein kinase alpha gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2004, 1681, 47-52.	2.4	1