
Steven L Kelly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1432994/publications.pdf Version: 2024-02-01

STEVEN | KELLY

#	Article	IF	CITATIONS
1	Cytochrome P450 168A1 from Pseudomonas aeruginosa is involved in the hydroxylation of biologically relevant fatty acids. PLoS ONE, 2022, 17, e0265227.	2.5	2
2	Widespread distribution of resistance to triazole fungicides in Brazilian populations of the wheat blast pathogen. Plant Pathology, 2021, 70, 436-448.	2.4	23
3	Concerning P450 Evolution: Structural Analyses Support Bacterial Origin of Sterol 14α-Demethylases. Molecular Biology and Evolution, 2021, 38, 952-967.	8.9	19
4	Loss-of-Function <i>ROX1</i> Mutations Suppress the Fluconazole Susceptibility of <i>upc2A</i> Δ Mutation in Candida glabrata, Implicating Additional Positive Regulators of Ergosterol Biosynthesis. MSphere, 2021, 6, e0083021.	2.9	3
5	The negative cofactor 2 complex is a key regulator of drug resistance in Aspergillus fumigatus. Nature Communications, 2020, 11, 427.	12.8	100
6	Controlled in vitro delivery of voriconazole and diclofenac to the cornea using contact lenses for the treatment of Acanthamoeba keratitis. International Journal of Pharmaceutics, 2020, 579, 119102.	5.2	14
7	Isavuconazole and voriconazole inhibition of sterol 14α-demethylases (CYP51) from Aspergillus fumigatus and Homo sapiens. International Journal of Antimicrobial Agents, 2019, 54, 449-455.	2.5	9
8	On the occurrence of cytochrome P450 in viruses. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12343-12352.	7.1	45
9	Mutations in <i>hmg1</i> , Challenging the Paradigm of Clinical Triazole Resistance in Aspergillus fumigatus. MBio, 2019, 10, .	4.1	85
10	The Evolution of Azole Resistance in <i>Candida albicans</i> Sterol 14α-Demethylase (CYP51) through Incremental Amino Acid Substitutions. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	32
11	Comparative Genomics for the Elucidation of Multidrug Resistance in Candida lusitaniae. MBio, 2019, 10, .	4.1	37
12	<i>ERG6</i> and <i>ERG2</i> Are Major Targets Conferring Reduced Susceptibility to Amphotericin B in Clinical <i>Candida glabrata</i> Isolates in Kuwait. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	44
13	Additional pathways of sterol metabolism: Evidence from analysis of Cyp27a1â°'/â^' mouse brain and plasma. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 191-211.	2.4	29
14	<i>In Vitro</i> and <i>In Vivo</i> Efficacy of a Novel and Long-Acting Fungicidal Azole, PC1244, on Aspergillus fumigatus Infection. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	24
15	Loss of Upc2p-Inducible <i>ERG3</i> Transcription Is Sufficient To Confer Niche-Specific Azole Resistance without Compromising Candida albicans Pathogenicity. MBio, 2018, 9, .	4.1	15
16	Functional importance for developmental regulation of sterol biosynthesis in Acanthamoeba castellanii. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1164-1178.	2.4	14
17	<i>In Vitro</i> and <i>In Vivo</i> Antifungal Profile of a Novel and Long-Acting Inhaled Azole, PC945, on Aspergillus fumigatus Infection. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	60
18	The Tetrazole VT-1161 Is a Potent Inhibitor of Trichophyton rubrum through Its Inhibition of T. rubrum CYP51. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	20

STEVEN L KELLY

#	Article	IF	CITATIONS
19	Loss of C-5 Sterol Desaturase Activity Results in Increased Resistance to Azole and Echinocandin Antifungals in a Clinical Isolate of Candida parapsilosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	42
20	Azole sensitivity in Leptosphaeria pathogens of oilseed rape: the role of lanosterol 14α-demethylase. Scientific Reports, 2017, 7, 15849.	3.3	11
21	Co-production of 11α-hydroxyprogesterone and ethanol using recombinant yeast expressing fungal steroid hydroxylases. Biotechnology for Biofuels, 2017, 10, 226.	6.2	14
22	Azole Antifungal Sensitivity of Sterol 14α-Demethylase (CYP51) and CYP5218 from Malassezia globosa. Scientific Reports, 2016, 6, 27690.	3.3	14
23	The Investigational Drug VT-1129 Is a Highly Potent Inhibitor of Cryptococcus Species CYP51 but Only Weakly Inhibits the Human Enzyme. Antimicrobial Agents and Chemotherapy, 2016, 60, 4530-4538.	3.2	57
24	Proper Sterol Distribution Is Required for Candida albicans Hyphal Formation and Virulence. G3: Genes, Genomes, Genetics, 2016, 6, 3455-3465.	1.8	9
25	Azole Antifungal Agents To Treat the Human Pathogens Acanthamoeba castellanii and Acanthamoeba polyphaga through Inhibition of Sterol 14α-Demethylase (CYP51). Antimicrobial Agents and Chemotherapy, 2015, 59, 4707-4713.	3.2	33
26	Novel Substrate Specificity and Temperature-Sensitive Activity of Mycosphaerella graminicola CYP51 Supported by the Native NADPH Cytochrome P450 Reductase. Applied and Environmental Microbiology, 2015, 81, 3379-3386.	3.1	13
27	Azole fungicidesÂ-Âunderstanding resistance mechanisms in agricultural fungal pathogens. Pest Management Science, 2015, 71, 1054-1058.	3.4	214
28	In VitroBiochemical Study of CYP51-Mediated Azole Resistance in Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2015, 59, 7771-7778.	3.2	32
29	Paralog Re-Emergence: A Novel, Historically Contingent Mechanism in the Evolution of Antimicrobial Resistance. Molecular Biology and Evolution, 2014, 31, 1793-1802.	8.9	89
30	Co-production of ethanol and squalene using a Saccharomyces cerevisiae ERG1 (squalene epoxidase) mutant and agro-industrial feedstock. Biotechnology for Biofuels, 2014, 7, 133.	6.2	21
31	Resistance to antifungals that target CYP51. Journal of Chemical Biology, 2014, 7, 143-161.	2.2	146
32	Clotrimazole as a Potent Agent for Treating the Oomycete Fish Pathogen Saprolegnia parasitica through Inhibition of Sterol 14α-Demethylase (CYP51). Applied and Environmental Microbiology, 2014, 80, 6154-6166.	3.1	41
33	Co-production of bioethanol and probiotic yeast biomass from agricultural feedstock: application of the rural biorefinery concept. AMB Express, 2014, 4, 64.	3.0	12
34	Prothioconazole and Prothioconazole-Desthio Activities against Candida albicans Sterol 14-α-Demethylase. Applied and Environmental Microbiology, 2013, 79, 1639-1645.	3.1	73
35	Microbial cytochromes P450: biodiversity and biotechnology. Where do cytochromes P450 come from, what do they do and what can they do for us?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120476.	4.0	180
36	Characterization of the sterol 14αâ€demethylases of <i>Fusarium graminearum</i> identifies a novel genusâ€specific <scp>CYP</scp> 51 function. New Phytologist, 2013, 198, 821-835.	7.3	146

STEVEN L KELLY

#	Article	IF	CITATIONS
37	A Clinical Isolate of <i>Candida albicans</i> with Mutations in <i>ERG11</i> (Encoding Sterol) Tj ETQq1 1 0.784 Amphotericin B. Antimicrobial Agents and Chemotherapy, 2010, 54, 3578-3583.	314 rgBT 3.2	Overlock 1 152
38	Crystal Structure of Albaflavenone Monooxygenase Containing a Moonlighting Terpene Synthase Active Site. Journal of Biological Chemistry, 2009, 284, 36711-36719.	3.4	73
39	Functional profiling of the Saccharomyces cerevisiae genome. Nature, 2002, 418, 387-391.	27.8	3,938
40	Biotransformation of steroids by the fission yeastSchizosaccharomyces pombe. , 1999, 15, 639-645.		26
41	Metabolism of the herbicide chlortoluron by human cytochrome P450 3A4. Chemosphere, 1995, 31, 4515-4529.	8.2	12
42	Microbial transformations of steroids—VIII. Transformation of progesterone by whole cells and microsomes of Aspergillus fumigatus. Journal of Steroid Biochemistry and Molecular Biology, 1994, 49, 93-100.	2.5	48
43	Metabolic arsenal of giant viruses: Host hijack or self-use?. ELife, 0, 11, .	6.0	12