
Barry W Festoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/143248/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Evolving Concept of Neuro-Thromboinflammation for Neurodegenerative Disorders and Neurotrauma: A Rationale for PAR1-Targeting Therapies. Biomolecules, 2021, 11, 1558.	4.0	1
2	Thrombin and the Coag-Inflammatory Nexus in Neurotrauma, ALS, and Other Neurodegenerative Disorders. Frontiers in Neurology, 2019, 10, 59.	2.4	24
3	Proximate Mediators of Microvascular Dysfunction at the Blood-Brain Barrier: Neuroinflammatory Pathways to Neurodegeneration. BioMed Research International, 2017, 2017, 1-14.	1.9	3
4	HMGB1 and thrombin mediate the blood-brain barrier dysfunction acting as biomarkers of neuroinflammation and progression to neurodegeneration in Alzheimer's disease. Journal of Neuroinflammation, 2016, 13, 194.	7.2	145
5	Membrane lipid peroxidation in neurodegeneration: Role of thrombin and proteinase-activated receptor-1. Brain Research, 2016, 1643, 10-17.	2.2	21
6	Mitochondrial Lysates Induce Inflammation and Alzheimer's Disease-Relevant Changes in Microglial and Neuronal Cells. Journal of Alzheimer's Disease, 2015, 45, 305-318.	2.6	67
7	Bioenergetic Dysfunction and Inflammation in Alzheimerââ,¬â,,¢s Disease: A Possible Connection. Frontiers in Aging Neuroscience, 2014, 6, 311.	3.4	38
8	Designing drugs that encourage spinal cord injury healing. Expert Opinion on Drug Discovery, 2014, 9, 1151-1165.	5.0	7
9	Microglial activation, increased TNF and SERT expression in the prefrontal cortex define stress-altered behaviour in mice susceptible to anhedonia. Brain, Behavior, and Immunity, 2013, 29, 136-146.	4.1	169
10	Novel mutation in <i>VCP</i> gene causes atypical amyotrophic lateral sclerosis. Neurology, 2012, 79, 2201-2208.	1.1	61
11	Soluble thrombomodulin levels in plasma of multiple sclerosis patients and their implication. Journal of the Neurological Sciences, 2012, 323, 61-65.	0.6	18
12	Neuroprotective Effects of Caspase-3 Inhibition on Functional Recovery and Tissue Sparing After Acute Spinal Cord Injury. Spine, 2008, 33, 2269-2277.	2.0	20
13	GRK5 deficiency leads to early Alzheimer-like pathology and working memory impairment. Neurobiology of Aging, 2007, 28, 1873-1888.	3.1	68
14	Longitudinal magnetic resonance imaging of spinal cord injury in mouse: changes in signal patterns associated with the inflammatory response. Magnetic Resonance Imaging, 2007, 25, 657-664.	1.8	39
15	Minocycline neuroprotects, reduces microgliosis, and inhibits caspase protease expression early after spinal cord injury. Journal of Neurochemistry, 2006, 97, 1314-1326.	3.9	207
16	Magnetic resonance imaging of mouse spinal cord. Magnetic Resonance in Medicine, 2005, 54, 1226-1231.	3.0	33
17	Tissue transglutaminase during mouse central nervous system development: Lack of alternative RNA processing and implications for its role(s) in murine models of neurotrauma and neurodegeneration. Molecular Brain Research, 2005, 135, 122-133.	2.3	9
18	Abnormality of G-Protein-Coupled Receptor Kinases at Prodromal and Early Stages of Alzheimer's Disease: An Association with Early Â-Amyloid Accumulation. Journal of Neuroscience, 2004, 24, 3444-3452.	3.6	68

#	Article	lF	CITATIONS
19	Neuroprotective Effects of Recombinant Thrombomodulin in Controlled Contusion Spinal Cord Injury Implicates Thrombin Signaling. Journal of Neurotrauma, 2004, 21, 907-922.	3.4	23
20	Rapid Tau Aggregation and Delayed Hippocampal Neuronal Death Induced by Persistent Thrombin Signaling. Journal of Biological Chemistry, 2003, 278, 37681-37689.	3.4	87
21	Persistent Protease-activated Receptor 4 Signaling Mediates Thrombin-induced Microglial Activation. Journal of Biological Chemistry, 2003, 278, 31177-31183.	3.4	106
22	Protein crosslinking, tissue transglutaminase, alternative splicing and neurodegeneration. Neurochemistry International, 2002, 40, 69-78.	3.8	126
23	Neuroprotective signal transduction in model motor neurons exposed to thrombin: G-protein modulation effects on neurite outgrowth, Ca2+ mobilization, and apoptosis. Journal of Neurobiology, 2001, 48, 87-100.	3.6	37
24	Plasticity and stabilization of neuromuscular and CNS synapses: interactions between thrombin protease signaling pathways and tissue transglutaminase. International Review of Cytology, 2001, 211, 153-177.	6.2	36
25	Intron-Exon Swapping of Transglutaminase mRNA and Neuronal Tau Aggregation in Alzheimer's Disease. Journal of Biological Chemistry, 2001, 276, 3295-3301.	3.4	99
26	Neuroprotective signal transduction in model motor neurons exposed to thrombin: Gâ€protein modulation effects on neurite outgrowth, Ca2 mobilization, and apoptosis. Journal of Neurobiology, 2001, 48, 87-100.	3.6	3
27	Motor Neuron Cell Death in Wobbler Mutant Mice Follows Overexpression of the G-protein-coupled, Protease-activated Receptor for Thrombin. Molecular Medicine, 2000, 6, 410-429.	4.4	64
28	Upregulation of Neurotoxic Serine Proteases, Prothrombin, and Protease-Activated Receptor 1 Early After Spinal Cord Injury. Journal of Neurotrauma, 2000, 17, 1191-1203.	3.4	67
29	Rapid Upregulation of Caspase-3 in Rat Spinal Cord after Injury: mRNA, Protein, and Cellular Localization Correlates with Apoptotic Cell Death. Experimental Neurology, 2000, 166, 213-226.	4.1	132
30	Insulin-like Growth Factor Binding Proteins in Cerebrospinal Fluid during Human Development and Aging. Biochemical and Biophysical Research Communications, 1999, 264, 652-656.	2.1	19
31	Thrombin-induced reversal of astrocyte stellation is mediated by activation of protein kinase C beta-1. FEBS Journal, 1998, 255, 766-774.	0.2	26
32	Developmental regulation of the serpin, protease nexin I, localization during activity-dependent polyneuronal synapse elimination in mouse skeletal muscle. , 1998, 397, 572-579.		27
33	Thrombin is an extracellular signal that activates intracellular death protease pathways inducing apoptosis in model motor neurons. Journal of Neurobiology, 1998, 36, 64-80.	3.6	109
34	Calcium mobilization and protease-activated receptor cleavage after thrombin stimulation in motor neurons. Journal of Molecular Neuroscience, 1998, 10, 31-44.	2.3	28
35	Quantitative reverse transcriptase PCR to gauge increased protease-activated receptor 1 (PAR-1) mRNA copy numbers in thewobbler mutant mouse. Journal of Molecular Neuroscience, 1998, 10, 113-119.	2.3	11
36	Serpin=serine protease-like complexes within neurofilament conglomerates of motoneurons in amyotrophic lateral sclerosis. Journal of the Neurological Sciences, 1998, 160, S73-S79.	0.6	38

#	Article	IF	CITATIONS
37	Apoptosis in Cellular Compartments of Rat Spinal Cord After Severe Contusion Injury. Journal of Neurotrauma, 1998, 15, 459-472.	3.4	190
38	Characterization of Apoptosis in a Motor Neuron Cell Line. Spine, 1998, 23, 151-158.	2.0	12
39	Thrombin Perturbs Neurite Outgrowth and Induces Apoptotic Cell Death in Enriched Chick Spinal Motoneuron Cultures through Caspase Activation. Journal of Neuroscience, 1998, 18, 6882-6891.	3.6	124
40	Thrombin is an extracellular signal that activates intracellular death protease pathways inducing apoptosis in model motor neurons. Journal of Neurobiology, 1998, 36, 64-80.	3.6	4
41	QUANTITATIVE PCR ANALYSIS REVEALS NOVEL EXPRESSION OF PROTHROMBIN mRNA AND REGULATION OF ITS LEVELS IN DEVELOPING MOUSE MUSCLE. Thrombosis Research, 1997, 87, 303-313.	1.7	27
42	Apoptotic, injury-induced cell death in cultured mouse murine motor neurons. Neuroscience Letters, 1997, 230, 25-28.	2.1	19
43	Novel expression and localization of active thrombomodulin on the surface of mouse brain astrocytes. , 1997, 19, 259-268.		26
44	Novel expression and localization of active thrombomodulin on the surface of mouse brain astrocytes. Glia, 1997, 19, 259-268.	4.9	2
45	Thrombin and Its Precursor in Human Cerebrospinal Fluid. Thrombosis and Haemostasis, 1997, 78, 1473-1479.	3.4	20
46	Myoblast Fusion Promotes the Appearance of Active Protease Nexin I on Human Muscle Cell Surfaces. Experimental Cell Research, 1996, 222, 70-76.	2.6	25
47	Amyotrophic Lateral Sclerosis. Drugs, 1996, 51, 28-44.	10.9	34
48	Protease nexin I (PNI) in mouse brain is expressed from the same gene as in seminal vesicle. Journal of Molecular Neuroscience, 1996, 7, 183-191.	2.3	5
49	Prevention of activity-dependent neuronal death: Vasoactive intestinal polypeptide stimulates astrocytes to secrete the thrombin-inhibiting neurotrophic serpin, protease nexin I. , 1996, 30, 255-266.		82
50	Thrombin, Its Receptor and Protease Nexin I, Its Potent Serpin, in the Nervous System. Seminars in Thrombosis and Hemostasis, 1996, 22, 267-271.	2.7	70
51	Neural Thrombin and Protease Nexin I Kinetics After Murine Peripheral Nerve Injury. Journal of Neurochemistry, 1996, 67, 2188-2199.	3.9	47
52	Serine proteinase inhibitors in human skeletal muscle: Expression of β-amyloid protein precursor and α1-antichymotrypsin in vivo and during myogenesis in vitro. Journal of Cellular Physiology, 1995, 165, 503-511.	4.1	14
53	Synaptic transmission blockade increases plasminogen activator activity in mouse skeletal muscle poisoned with botulinum toxin type A. Synapse, 1995, 20, 24-32.	1.2	15
54	The insulin-like growth factor signaling system and ALS neurotrophic factor treatment strategies. Journal of the Neurological Sciences, 1995, 129, 114-121.	0.6	25

#	Article	IF	CITATIONS
55	Extravascular Proteolysis and the Nervous System: Serine Protease/Serpin Balance. Seminars in Thrombosis and Hemostasis, 1994, 20, 426-432.	2.7	22
56	Insulin-like growth factor binding protein-1 at mouse neuromuscular synapses. Synapse, 1994, 17, 225-229.	1.2	16
57	Insulin-like growth factor binding protein-1 is pre-synaptic at mouse neuromuscular synapses and is transported in nerve. Neurochemical Research, 1994, 19, 1363-1368.	3.3	9
58	Neurotrophic regulation of mouse muscle β-amyloid protein precursor and α1-antichymotrypsin as revealed by axotomy. Journal of Neurobiology, 1994, 25, 503-514.	3.6	27
59	Activation of serpins and their cognate proteases in muscle after crush injury. Journal of Cellular Physiology, 1994, 159, 11-18.	4.1	32
60	Cross-linking of β-amyloid protein precursor catalysed by tissue transglutaminase. FEBS Letters, 1994, 349, 151-154.	2.8	53
61	Apolipoprotein E expression at neuromuscular junctions in mouse, rat and human skeletal muscle. FEBS Letters, 1994, 351, 246-248.	2.8	28
62	Plasminogen activator inhibitor 1, the primary regulator of fibrinolysis, in normal human cerebrospinal fluid. Journal of Neuroscience Research, 1993, 34, 340-345.	2.9	26
63	Increased levels of plasminogen activator inhibitor-1 (PAI-1) in human brain tumors. Journal of Neuro-Oncology, 1993, 17, 215-221.	2.9	32
64	Plasminogen activators in the neuromuscular system of the wobbler mutant mouse. Brain Research, 1992, 580, 303-310.	2.2	24
65	Characterization of the Serpin, ?1-Antichymotrypsin, in Normal Human Cerebrospinal Fluid. Journal of Neurochemistry, 1992, 58, 88-94.	3.9	13
66	Proteoglycan synthesis by clonal skeletal muscle cells during in vitro myogenesis: Differences detected in the types and patterns from primary cultures. International Journal of Developmental Neuroscience, 1991, 9, 259-267.	1.6	10
67	Plasminogen activators and their inhibitors in the neuromuscular system: I. Developmental regulation of plasminogen activator isoforms during in vitro myogenesis in two cell lines. Journal of Cellular Physiology, 1990, 144, 262-271.	4.1	18
68	Plasminogen activators and their inhibitors in the neuromuscular system: II. Serpins and serpin: Protease complex receptors increase during in vitro myogenesis. Journal of Cellular Physiology, 1990, 144, 272-279.	4.1	25
69	Environmental influence on altered receptor function in a genetic disease: Insulin and glucose affect insulin receptors in myotonic dystrophy. Journal of the Neurological Sciences, 1989, 89, 15-25.	0.6	5
70	Chapter 35 Plasminogen activators and inhibitors: roles in muscle and neuromuscular regeneration. Progress in Brain Research, 1987, 71, 423-431.	1.4	22
71	Degradation of muscle basement membrane zone by locally generated plasmin. Experimental Neurology, 1987, 95, 44-55.	4.1	30
72	Proteoglycan synthesis by primary chick skeletal muscle during in vitro myogenesis. Journal of Cellular Physiology, 1987, 133, 258-266.	4.1	8

#	Article	IF	CITATIONS
73	Collagenase activity in skin fibroblasts of patients with amyotrophic lateral sclerosis. Journal of the Neurological Sciences, 1986, 72, 49-60.	0.6	24
74	Specificity of chicken and mammalian transferrins in myogenesis. Cell Differentiation, 1985, 16, 93-100.	0.4	19
75	Treatment of central nervous system sarcoidosis with radiotherapy. Annals of Neurology, 1985, 18, 258-260.	5.3	61
76	Regulation of mitotic activity and the cell cycle in primary chick muscle cells by neurotransferrin. Journal of Cellular Physiology, 1984, 119, 234-240.	4.1	16
77	Peripheral nerve extract promotes long-term survival and neurite outgrowth in cultured spinal cord neurons. Cellular and Molecular Neurobiology, 1984, 4, 67-77.	3.3	18
78	Insulin resistance in amyotrophic lateral sclerosis. Journal of the Neurological Sciences, 1984, 63, 317-324.	0.6	85
79	Appearance of acetylcholinesterase molecular forms in noninnervated cultured primary chick muscle cells. Cellular and Molecular Neurobiology, 1983, 3, 263-277.	3.3	4
80	Bidirectional axonal transport of 16S acetylcholinesterase in rat sciatic nerve. Journal of Neurobiology, 1980, 11, 31-39.	3.6	32
81	Neuromuscular junction macromolecules in the pathogenesis of amyotrophic lateral sclerosis. Medical Hypotheses, 1980, 6, 121-131.	1.5	39
82	Neurotrophic control of 16S acetylcholinesterase at the vertebrate neuromuscular junction. Journal of Neurobiology, 1979, 10, 441-454.	3.6	97
83	Neurotrophic control of skeletal muscle phospholipids. Muscle and Nerve, 1979, 2, 118-123.	2.2	7