
Elaine M Worcester

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1431875/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Collagen fibrils and cell nuclei are entrapped within Randall's plaques but not in <scp>CaOx</scp> matrix overgrowth: A microscopic inquiry into Randall's plaque stone pathogenesis. Anatomical Record, 2022, 305, 1701-1711.	1.4	2
2	Primary hyperoxaluria: the adult nephrologist's point of view. CKJ: Clinical Kidney Journal, 2022, 15, i29-i32.	2.9	3
3	Pathophysiology and Treatment of Enteric Hyperoxaluria. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 487-495.	4.5	63
4	Multimodal imaging reveals a unique autofluorescence signature of Randall's plaque. Urolithiasis, 2021, 49, 123-135.	2.0	15
5	Demineralization and sectioning of human kidney stones: A molecular investigation revealing the spatial heterogeneity of the stone matrix. Physiological Reports, 2021, 9, e14658.	1.7	5
6	Increased Urinary Leukocyte Esterase Distinguishes Patients With Brushite Kidney Stones. Kidney International Reports, 2021, 6, 1729-1731.	0.8	1
7	Relative contributions of urine sulfate, titratable urine anion, and GI anion to net acid load and effects of age. Physiological Reports, 2021, 9, e14870.	1.7	2
8	Evidence for abnormal linkage between urine oxalate and citrate excretion in human kidney stone formers. Physiological Reports, 2021, 9, e14943.	1.7	4
9	Discrepancy Between Stone and Tissue Mineral Type in Patients with Idiopathic Uric Acid Stones. Journal of Endourology, 2020, 34, 385-393.	2.1	2
10	Evidence for disordered acid-base handling in calcium stone-forming patients. American Journal of Physiology - Renal Physiology, 2020, 318, F363-F374.	2.7	6
11	In Vivo Renal Tubule pH in Stone-Forming Human Kidneys. Journal of Endourology, 2020, 34, 203-208.	2.1	2
12	A Precision Medicine Approach Uncovers a Unique Signature of Neutrophils in Patients With Brushite Kidney Stones. Kidney International Reports, 2020, 5, 663-677.	0.8	19
13	Racial Differences in Risk Factors for Kidney Stone Formation. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 1166-1173.	4.5	14
14	Risk Factors for Kidney Stone Formation following Bariatric Surgery. Kidney360, 2020, 1, 1456-1461.	2.1	4
15	Pathophysiology of Kidney Stone Formation. , 2019, , 21-42.		5
16	Mechanisms for falling urine pH with age in stone formers. American Journal of Physiology - Renal Physiology, 2019, 317, F65-F72.	2.7	18
17	Association Between Randall's Plaque Stone Anchors and Renal Papillary Pits. Journal of Endourology, 2019, 33, 337-342.	2.1	6
18	Papillary Ductal Plugging is a Mechanism for Early Stone Retention in Brushite Stone Disease. Journal of Urology, 2018, 199, 186-192.	0.4	18

ELAINE M WORCESTER

#	Article	IF	CITATIONS
19	Randall's plaque in stone formers originates in ascending thin limbs. American Journal of Physiology - Renal Physiology, 2018, 315, F1236-F1242.	2.7	29
20	Evidence for a role of PDZ domain-containing proteins to mediate hypophosphatemia in calcium stone formers. Nephrology Dialysis Transplantation, 2018, 33, 759-770.	0.7	2
21	Mechanism for higher urine pH in normal women compared with men. American Journal of Physiology - Renal Physiology, 2018, 314, F623-F629.	2.7	49
22	What can the microstructure of stones tell us?. Urolithiasis, 2017, 45, 19-25.	2.0	20
23	Endoscopic Evidence That Randall's Plaque is Associated with Surface Erosion of the Renal Papilla. Journal of Endourology, 2017, 31, 85-90.	2.1	8
24	Idiopathic hypercalciuria and formation of calcium renal stones. Nature Reviews Nephrology, 2016, 12, 519-533.	9.6	145
25	Current recommended 25-hydroxyvitamin D targets for chronic kidney disease management may be too low. Journal of Nephrology, 2016, 29, 63-70.	2.0	33
26	Label-free proteomic methodology for the analysis of human kidney stone matrix composition. Proteome Science, 2016, 14, 4.	1.7	26
27	Sex differences in proximal and distal nephron function contribute to the mechanism of idiopathic hypercalcuria in calcium stone formers. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R85-R92.	1.8	15
28	Mechanism by which shock wave lithotripsy can promote formation of human calcium phosphate stones. American Journal of Physiology - Renal Physiology, 2015, 308, F938-F949.	2.7	14
29	Nephrocalcinosis in Calcium Stone Formers Who Do Not have Systemic Disease. Journal of Urology, 2015, 194, 1308-1312.	0.4	9
30	Do kidney stone formers have a kidney disease?. Kidney International, 2015, 88, 1240-1249.	5.2	41
31	Mechanisms of human kidney stone formation. Urolithiasis, 2015, 43, 19-32.	2.0	135
32	Calcium supplementation in chronic kidney disease. Expert Opinion on Drug Safety, 2014, 13, 1175-1185.	2.4	12
33	Contrasting Histopathology and Crystal Deposits in Kidneys of Idiopathic Stone Formers Who Produce Hydroxy Apatite, Brushite, or Calcium Oxalate Stones. Anatomical Record, 2014, 297, 731-748.	1.4	47
34	2254 THE MAJORITY OF CALCIUM PHOSPHATE STONE FORMERS WITHOUT SYSTEMIC DISEASE HAVE NEPHROCALCINOSIS. Journal of Urology, 2013, 189, .	0.4	1
35	Pathogenesis and Treatment of Nephrolithiasis. , 2013, , 2311-2349.		5
36	A test of the hypothesis that oxalate secretion produces proximal tubule crystallization in primary hyperoxaluria type I. American Journal of Physiology - Renal Physiology, 2013, 305, F1574-F1584.	2.7	37

ELAINE M WORCESTER

#	Article	IF	CITATIONS
37	Role of proximal tubule in the hypocalciuric response to thiazide of patients with idiopathic hypercalciuria. American Journal of Physiology - Renal Physiology, 2013, 305, F592-F599.	2.7	42
38	Evidence for increased renal tubule and parathyroid gland sensitivity to serum calcium in human idiopathic hypercalciuria. American Journal of Physiology - Renal Physiology, 2013, 305, F853-F860.	2.7	16
39	Evaluation and management of nephrolithiasis in the aging population with chronic kidney disease. Aging Health, 2011, 7, 423-433.	0.3	1
40	Pathophysiology-Based Treatment of Idiopathic Calcium Kidney Stones. Clinical Journal of the American Society of Nephrology: CJASN, 2011, 6, 2083-2092.	4.5	57
41	Evidence for net renal tubule oxalate secretion in patients with calcium kidney stones. American Journal of Physiology - Renal Physiology, 2011, 300, F311-F318.	2.7	36
42	Three pathways for human kidney stone formation. Urological Research, 2010, 38, 147-160.	1.5	174
43	Plaque and deposits in nine human stone diseases. Urological Research, 2010, 38, 239-247.	1.5	71
44	Evidence for altered renal tubule function in idiopathic calcium stone formers. Urological Research, 2010, 38, 263-269.	1.5	9
45	Comparison of the pathology of interstitial plaque in human ICSF stone patients to NHERF-1 and THP-null mice. Urological Research, 2010, 38, 439-452.	1.5	20
46	Calcium Kidney Stones. New England Journal of Medicine, 2010, 363, 954-963.	27.0	319
47	Renal histopathology and crystal deposits in patients with small bowel resection and calcium oxalate stone disease. Kidney International, 2010, 78, 310-317.	5.2	67
48	Intra-tubular deposits, urine and stone composition are divergent in patients with ileostomy. Kidney International, 2009, 76, 1081-1088.	5.2	39
49	A test of the hypothesis that the collecting duct calcium-sensing receptor limits rise of urine calcium molarity in hypercalciuric calcium kidney stone formers. American Journal of Physiology - Renal Physiology, 2009, 297, F1017-F1023.	2.7	37
50	Clinical and laboratory characteristics of calcium stoneâ€formers with and without primary hyperparathyroidism. BJU International, 2009, 103, 670-678.	2.5	54
51	Renal Intratubular Crystals and Hyaluronan Staining Occur in Stone Formers with Bypass Surgery but not with Idiopathic Calcium Oxalate Stones. Anatomical Record, 2008, 291, 325-334.	1.4	44
52	Histopathology and surgical anatomy of patients with primary hyperparathyroidism and calcium phosphate stones. Kidney International, 2008, 74, 223-229.	5.2	65
53	New Insights Into the Pathogenesis of Idiopathic Hypercalciuria. Seminars in Nephrology, 2008, 28, 120-132.	1.6	138
54	Nephrolithiasis. Primary Care - Clinics in Office Practice, 2008, 35, 369-391.	1.6	152

ELAINE M WORCESTER

#	Article	IF	CITATIONS
55	Evidence for increased postprandial distal nephron calcium delivery in hypercalciuric stone-forming patients. American Journal of Physiology - Renal Physiology, 2008, 295, F1286-F1294.	2.7	66
56	Urine pH in renal calcium stone formers who do and do not increase stone phosphate content with time. Nephrology Dialysis Transplantation, 2008, 24, 130-136.	0.7	59
57	Pathogenesis of Stone Disease. AIP Conference Proceedings, 2008, , .	0.4	О
58	Evidence that postprandial reduction of renal calcium reabsorption mediates hypercalciuria of patients with calcium nephrolithiasis. American Journal of Physiology - Renal Physiology, 2007, 292, F66-F75.	2.7	71
59	Mechanism of Formation of Human Calcium Oxalate Renal Stones on Randall's Plaque. Anatomical Record, 2007, 290, 1315-1323.	1.4	163
60	Renal Function in Patients With Nephrolithiasis. Journal of Urology, 2006, 176, 600-603.	0.4	101
61	Endoscopic Evidence of Calculus Attachment to Randall's Plaque. Journal of Urology, 2006, 175, 1720-1724.	0.4	84
62	Reduced renal function and benefits of treatment in cystinuria vs other forms of nephrolithiasis. BJU International, 2006, 97, 1285-1290.	2.5	50
63	Pathophysiological correlates of two unique renal tubule lesions in rats with intestinal resection. American Journal of Physiology - Renal Physiology, 2006, 291, F1061-F1069.	2.7	6
64	1541: Renal Crystal Depsoits and Histopathology in Patients with Cystine Stones. Journal of Urology, 2006, 175, 498-498.	0.4	1
65	Crystal-associated nephropathy in patients with brushite nephrolithiasis. Kidney International, 2005, 67, 576-591.	5.2	154
66	A new animal model of hyperoxaluria and nephrolithiasis in rats with small bowel resection. Urological Research, 2005, 33, 380-382.	1.5	9
67	Kidney stone disease. Journal of Clinical Investigation, 2005, 115, 2598-2608.	8.2	603
68	Clinical implications of abundant calcium phosphatein routinely analyzed kidney stones. Kidney International, 2004, 66, 777-785.	5.2	186
69	Causes and consequences of kidney loss in patients with nephrolithiasis. Kidney International, 2003, 64, 2204-2213.	5.2	89
70	Stones from bowel disease. Endocrinology and Metabolism Clinics of North America, 2002, 31, 979-999.	3.2	133