Hector R Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1431834/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pediatric sepsis biomarkers for prognostic and predictive enrichment. Pediatric Research, 2022, 91, 283-288.	1.1	16
2	Advancing precision medicine for acute respiratory distress syndrome. Lancet Respiratory Medicine,the, 2022, 10, 107-120.	5.2	83
3	Biomarkers associated with mortality in pediatric patients with cardiac arrest and acute respiratory distress syndrome. Resuscitation, 2022, 170, 184-193.	1.3	4
4	Matrix metalloproteinases and their inhibitors in pediatric severe acute pancreatitis. PLoS ONE, 2022, 17, e0261708.	1.1	2
5	Candidate Biomarkers for Sepsis-Associated Acute Kidney Injury Mechanistic Studies. Shock, 2022, Publish Ahead of Print, .	1.0	0
6	Redefining critical illness. Nature Medicine, 2022, 28, 1141-1148.	15.2	136
7	Multi-omic characterization of pediatric ARDS via nasal brushings. Respiratory Research, 2022, 23, .	1.4	2
8	Integrated PERSEVERE and endothelial biomarker risk model predicts death and persistent MODS in pediatric septic shock: a secondary analysis of a prospectiveAobservationalAstudy. Critical Care, 2022, 26, .	2.5	21
9	Olfactomedin 4–Positive Neutrophils Are Upregulated after Hemorrhagic Shock. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 216-223.	1.4	12
10	Sepsis Subclasses: A Framework for Development and Interpretation*. Critical Care Medicine, 2021, 49, 748-759.	0.4	81
11	Machine Learning Identifies Complicated Sepsis Course and Subsequent Mortality Based on 20 Genes in Peripheral Blood Immune Cells at 24 H Post-ICU Admission. Frontiers in Immunology, 2021, 12, 592303.	2.2	42
12	T-cell activation profiles distinguish hemophagocytic lymphohistiocytosis and early sepsis. Blood, 2021, 137, 2337-2346.	0.6	63
13	A Precision Medicine Approach to Biomarker Utilization in Pediatric Sepsis-Associated Acute Kidney Injury. Frontiers in Pediatrics, 2021, 9, 632248.	0.9	7
14	A neutrophil subset defined by intracellular olfactomedin 4 is associated with mortality in sepsis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L892-L902.	1.3	21
15	Recalibration of the Renal Angina Index for Pediatric Septic Shock. Kidney International Reports, 2021, 6, 1858-1867.	0.4	15
16	Transcriptional markers in response to hydrocortisone in sepsis in ADRENAL: a step toward precision medicine. Intensive Care Medicine, 2021, 47, 1011-1013.	3.9	1
17	IFN-Î ³ signature in the plasma proteome distinguishes pediatric hemophagocytic lymphohistiocytosis from sepsis and SIRS. Blood Advances, 2021, 5, 3457-3467.	2.5	23
18	Pediatric Sepsis Biomarker Risk Model Biomarkers and Estimation of Myocardial Dysfunction in Pediatric Septic Shock. Pediatric Critical Care Medicine, 2021, Publish Ahead of Print, .	0.2	3

#	Article	IF	CITATIONS
19	Circulatory Failure/Shock. , 2021, , 469-491.		0
20	External Corroboration That Corticosteroids May Be Harmful to Septic Shock Endotype A Patients. Critical Care Medicine, 2021, 49, e98-e101.	0.4	22
21	Biomarkers for Estimating Risk of Hospital Mortality and Long-Term Quality-of-Life Morbidity After Surviving Pediatric Septic Shock: A Secondary Analysis of the Life After Pediatric Sepsis Evaluation Investigation*. Pediatric Critical Care Medicine, 2021, 22, 8-15.	0.2	20
22	A Research Agenda for Precision Medicine in Sepsis and Acute Respiratory Distress Syndrome: An Official American Thoracic Society Research Statement. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 891-901.	2.5	38
23	Prognostic and predictive enrichment in sepsis. Nature Reviews Nephrology, 2020, 16, 20-31.	4.1	182
24	PERSEVERE Biomarkers Predict Severe Acute Kidney Injury and Renal Recovery in Pediatric Septic Shock. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 848-855.	2.5	45
25	Biomarker Panels in Critical Care. Critical Care Clinics, 2020, 36, 89-104.	1.0	15
26	Proprotein Convertase Subtilisin/Kexin Type 9 Loss-of-Function Is Detrimental to the Juvenile Host With Septic Shock*. Critical Care Medicine, 2020, 48, 1513-1520.	0.4	18
27	Myocardial Dysfunction Is Independently Associated With Mortality in Pediatric Septic Shock. , 2020, 2, e0231.		10
28	Peripheral blood transcriptomic sub-phenotypes of pediatric acute respiratory distress syndrome. Critical Care, 2020, 24, 681.	2.5	18
29	Longitudinal characterization of olfactomedin-4 expressing neutrophils in pediatric patients undergoing bone marrow transplantation. PLoS ONE, 2020, 15, e0233738.	1.1	5
30	Surviving Sepsis Campaign International Guidelines for the Management of Septic Shock and Sepsis-Associated Organ Dysfunction in Children. Pediatric Critical Care Medicine, 2020, 21, e52-e106.	0.2	567
31	Executive summary: surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Intensive Care Medicine, 2020, 46, 1-9.	3.9	70
32	Executive Summary: Surviving Sepsis Campaign International Guidelines for the Management of Septic Shock and Sepsis-Associated Organ Dysfunction in Children. Pediatric Critical Care Medicine, 2020, 21, 186-195.	0.2	48
33	Juvenile OLFM4-null mice are protected from sepsis. American Journal of Physiology - Renal Physiology, 2020, 318, F809-F816.	1.3	14
34	Severe acute kidney injury is independently associated with mortality in children with septic shock. Intensive Care Medicine, 2020, 46, 1050-1051.	3.9	18
35	Critical Illness Factors Associated With Long-Term Mortality and Health-Related Quality of Life Morbidity Following Community-Acquired Pediatric Septic Shock*. Critical Care Medicine, 2020, 48, 319-328.	0.4	64
36	Trajectory of Mortality and Health-Related Quality of Life Morbidity Following Community-Acquired Pediatric Septic Shock*. Critical Care Medicine, 2020, 48, 329-337.	0.4	91

#	Article	IF	CITATIONS
37	Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Intensive Care Medicine, 2020, 46, 10-67.	3.9	331
38	Two subphenotypes of septic acute kidney injury are associated with different 90-day mortality and renal recovery. Critical Care, 2020, 24, 150.	2.5	54
39	The olfactomedin-4 positive neutrophil has a role in murine intestinal ischemia/reperfusion injury. FASEB Journal, 2019, 33, 13660-13668.	0.2	9
40	Prospective clinical testing and experimental validation of the Pediatric Sepsis Biomarker Risk Model. Science Translational Medicine, 2019, 11, .	5.8	50
41	<scp>PPAR</scp> <i>α</i> contributes to protection against metabolic and inflammatory derangements associated with acute kidney injury in experimental sepsis. Physiological Reports, 2019, 7, e14078.	0.7	38
42	Route of Oseltamivir Administration Affects Metabolite Concentrations in Critically Ill Children. Pediatric Infectious Disease Journal, 2019, 38, 1224-1227.	1.1	4
43	Evidence of Endotypes in Pediatric Acute Hypoxemic Respiratory Failure Caused by Sepsis*. Pediatric Critical Care Medicine, 2019, 20, 110-112.	0.2	16
44	Sepsis genomics and precision medicine. , 2019, , 83-93.		1
45	Precision medicine in pediatric sepsis. Current Opinion in Pediatrics, 2019, 31, 322-327.	1.0	31
46	Olfactomedin 4 marks a subset of neutrophils in mice. Innate Immunity, 2019, 25, 22-33.	1.1	46
47	HDL Cholesterol: A "Pathogen Lipid Sink―for Sepsis?. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 812-814.	2.5	7
48	Sepsis Biomarkers. Journal of Pediatric Intensive Care, 2019, 08, 011-016.	0.4	12
49	Corticosteroid Therapy for Septic Shock and Pediatric ARDS. , 2019, , 271-284.		0
50	Characterization of the Glucocorticoid Receptor in Children Undergoing Cardiac Surgery*. Pediatric Critical Care Medicine, 2018, 19, 705-712.	0.2	6
51	A community approach to mortality prediction in sepsis via gene expression analysis. Nature Communications, 2018, 9, 694.	5.8	178
52	Beyond Survival: Pediatric Critical Care Interventional Trial Outcome Measure Preferences of Families and Healthcare Professionals*. Pediatric Critical Care Medicine, 2018, 19, e105-e111.	0.2	50
53	Hyperchloremia Is Associated With Complicated Course and Mortality in Pediatric Patients With Septic Shock*. Pediatric Critical Care Medicine, 2018, 19, 155-160.	0.2	60
54	Multicohort Analysis of Whole-Blood Gene Expression Data Does Not Form a Robust Diagnostic for Acute Respiratory Distress Syndrome. Critical Care Medicine, 2018, 46, 244-251.	0.4	26

#	Article	IF	CITATIONS
55	Endotype Transitions During the Acute Phase of Pediatric Septic Shock Reflect Changing Risk and Treatment Response. Critical Care Medicine, 2018, 46, e242-e249.	0.4	45
56	Embracing Enrichment and Unknown Unknowns*. Critical Care Medicine, 2018, 46, 156-158.	0.4	0
57	Unsupervised Analysis of Transcriptomics in Bacterial Sepsis Across Multiple Datasets Reveals Three Robust Clusters. Critical Care Medicine, 2018, 46, 915-925.	0.4	219
58	Validation of the Sepsis MetaScore for Diagnosis of Neonatal Sepsis. Journal of the Pediatric Infectious Diseases Society, 2018, 7, 129-135.	0.6	37
59	Adaptation of a Biomarker-Based Sepsis Mortality Risk Stratification Tool for Pediatric Acute Respiratory Distress Syndrome*. Critical Care Medicine, 2018, 46, e9-e16.	0.4	28
60	Biomarkers to estimate the probability of complicated appendicitis. Journal of Pediatric Surgery, 2018, 53, 437-440.	0.8	4
61	Interleukin-27 as a candidate diagnostic biomarker for bacterial infection in immunocompromised pediatric patients. PLoS ONE, 2018, 13, e0207620.	1.1	11
62	Phase 1 safety and pharmacokinetic study on the use of pioglitazone in critically ill patients with sepsis: a randomized clinical trial. Intensive Care Medicine, 2018, 44, 2006-2008.	3.9	5
63	The glucocorticoid receptor and cortisol levels in pediatric septic shock. Critical Care, 2018, 22, 244.	2.5	18
64	Hyperchloremia is associated with acute kidney injury in pediatric patients with septic shock. Intensive Care Medicine, 2018, 44, 2004-2005.	3.9	14
65	The relative resistance of children to sepsis mortality: from pathways to drug candidates. Molecular Systems Biology, 2018, 14, e7998.	3.2	14
66	Random serum free cortisol and total cortisol measurements in pediatric septic shock. Journal of Pediatric Endocrinology and Metabolism, 2018, 31, 757-762.	0.4	1
67	Nuclear PTEN enhances the maturation of a microRNA regulon to limit MyD88-dependent susceptibility to sepsis. Science Signaling, 2018, 11, .	1.6	13
68	Simplification of a Septic Shock Endotyping Strategy for Clinical Application. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 263-265.	2.5	25
69	Glucocorticoid Receptor Polymorphisms and Outcomes in Pediatric Septic Shock*. Pediatric Critical Care Medicine, 2017, 18, 299-303.	0.2	14
70	Second Generation Triple-Helical Peptide Inhibitors of Matrix Metalloproteinases. Journal of Medicinal Chemistry, 2017, 60, 3814-3827.	2.9	24
71	A Randomized Controlled Trial of Corticosteroids in Pediatric Septic Shock: A Pilot Feasibility Study*. Pediatric Critical Care Medicine, 2017, 18, 505-512.	0.2	35
72	Primary Outcome Measures in Pediatric Septic Shock Trials: A Systematic Review*. Pediatric Critical Care Medicine, 2017, 18, e146-e154.	0.2	20

#	Article	IF	CITATIONS
73	Searching for a Pediatric Severe Sepsis Phenotype: We Might Indeed Be There. Pediatric Critical Care Medicine, 2017, 18, 502-503.	0.2	2
74	An International Survey of Corticosteroid Use for the Management of Low Cardiac Output Syndrome*. Pediatric Critical Care Medicine, 2017, 18, 630-637.	0.2	12
75	Sepsis Subclasses: Be Careful of What You Wish for*. Pediatric Critical Care Medicine, 2017, 18, 591-592.	0.2	3
76	Early Diagnosis of Sepsis: Is an Integrated Omics Approach the Way Forward?. Molecular Diagnosis and Therapy, 2017, 21, 525-537.	1.6	32
77	Improved Risk Stratification in Pediatric Septic Shock Using Both Protein and mRNA Biomarkers. PERSEVERE-XP. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 494-501.	2.5	65
78	Olfactomedin-4 Is a Candidate Marker for a Pathogenic Neutrophil Subset in Septic Shock. Critical Care Medicine, 2017, 45, e426-e432.	0.4	81
79	Monitoring Severity of Multiple Organ Dysfunction Syndrome. Pediatric Critical Care Medicine, 2017, 18, S24-S31.	0.2	13
80	Intensive care medicine in 2050: precision medicine. Intensive Care Medicine, 2017, 43, 1507-1509.	3.9	42
81	Pediatric Sepsis Endotypes Among Adults With Sepsis. Critical Care Medicine, 2017, 45, e1289-e1291.	0.4	35
82	Comparison of Consent Models in a Randomized Trial of Corticosteroids in Pediatric Septic Shock*. Pediatric Critical Care Medicine, 2017, 18, 1009-1018.	0.2	15
83	Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study. Lancet Respiratory Medicine,the, 2017, 5, 816-826.	5.2	381
84	Leveraging Transcriptomics to Disentangle Sepsis Heterogeneity. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 258-260.	2.5	7
85	Zinc supplementation leads to immune modulation and improved survival in a juvenile model of murine sepsis. Innate Immunity, 2017, 23, 67-76.	1.1	27
86	Pathophysiology of Neonatal Sepsis. , 2017, , 1536-1552.e10.		9
87	SOCS1 is a negative regulator of metabolic reprogramming during sepsis. JCI Insight, 2017, 2, .	2.3	36
88	Intestine-Derived Matrix Metalloproteinase-8 Is a Critical Mediator of Polymicrobial Peritonitis*. Critical Care Medicine, 2016, 44, e200-e206.	0.4	15
89	Matrix Metalloproteinase-8 Augments Bacterial Clearance in a Juvenile sepsis Model. Molecular Medicine, 2016, 22, 455-463.	1.9	15
90	Excessive Reversal of Epidermal Growth Factor Receptor and Ephrin Signaling Following Tracheal Occlusion in Rabbit Model of congenital Diaphragmatic Hernia. Molecular Medicine, 2016, 22, 398-411.	1.9	15

#	Article	IF	CITATIONS
91	An Enrichment Strategy For Sepsis Clinical Trials. Shock, 2016, 46, 632-634.	1.0	8
92	Sepsis in Pediatric Cardiac Intensive Care. Pediatric Critical Care Medicine, 2016, 17, S266-S271.	0.2	13
93	Pediatric Sepsis Biomarker Risk Model-II: Redefining the Pediatric Sepsis Biomarker Risk Model With Septic Shock Phenotype. Critical Care Medicine, 2016, 44, 2010-2017.	0.4	95
94	Combining Prognostic and Predictive Enrichment Strategies to Identify Children With Septic Shock Responsive to Corticosteroids*. Critical Care Medicine, 2016, 44, e1000-e1003.	0.4	99
95	Estimating the probability of bacterial infection using a novel biomarker among pediatric patients in the emergency department. Biomarkers, 2016, 21, 404-408.	0.9	5
96	A Common Genetic Variant in TLR1 Enhances Human Neutrophil Priming and Impacts Length of Intensive Care Stay in Pediatric Sepsis. Journal of Immunology, 2016, 196, 1376-1386.	0.4	16
97	Targeting IL-17A attenuates neonatal sepsis mortality induced by IL-18. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2627-35.	3.3	83
98	Steroids in fluid and/or vasoactive infusion dependent pediatric shock: study protocol for a randomized controlled trial. Trials, 2016, 17, 238.	0.7	8
99	Role of matrix metalloproteinaseâ€8 as a mediator of injury in intestinal ischemia and reperfusion. FASEB Journal, 2016, 30, 3453-3460.	0.2	15
100	Emerging infection and sepsis biomarkers: will they change current therapies?. Expert Review of Anti-Infective Therapy, 2016, 14, 929-941.	2.0	28
101	Robust classification of bacterial and viral infections via integrated host gene expression diagnostics. Science Translational Medicine, 2016, 8, 346ra91.	5.8	299
102	Estimating Mortality Risk of Pediatric Critical Illness. Pediatric Critical Care Medicine, 2016, 17, 887-888.	0.2	2
103	Histological chorioamnionitis shapes the neonatal transcriptomic immune response. Early Human Development, 2016, 98, 1-6.	0.8	30
104	Risk Stratification and Prognosis in Sepsis. Clinics in Chest Medicine, 2016, 37, 209-218.	0.8	35
105	Safety and Dose Escalation Study of Intravenous Zinc Supplementation in Pediatric Critical Illness. Journal of Parenteral and Enteral Nutrition, 2016, 40, 860-868.	1.3	20
106	Prospective Testing and Redesign of a Temporal Biomarker Based Risk Model for Patients With Septic Shock: Implications for Septic Shock Biology. EBioMedicine, 2015, 2, 2087-2093.	2.7	11
107	Cerebrospinal fluid levels of extracellular heat shock protein 72: A potential biomarker for bacterial meningitis in children. Journal of Pediatric Intensive Care, 2015, 03, 023-028.	0.4	2
108	Glucocorticoid Receptor Expression in Peripheral WBCs of Critically Ill Children*. Pediatric Critical Care Medicine, 2015, 16, e132-e140.	0.2	13

#	Article	IF	CITATIONS
109	Cardiac Troponin Measurement in the Critically Ill. Journal of Investigative Medicine, 2015, 63, 1.	0.7	13
110	A Multibiomarker-Based Model for Estimating the Risk of Septic Acute Kidney Injury. Critical Care Medicine, 2015, 43, 1646-1653.	0.4	26
111	Corticosteroids in Pediatric Shock. Pediatric Critical Care Medicine, 2015, 16, e313-e317.	0.2	19
112	A Cohort Study of Pediatric Shock. Shock, 2015, 44, 402-409.	1.0	32
113	Postnatal Age Is a Critical Determinant of the Neonatal Host Response to Sepsis. Molecular Medicine, 2015, 21, 496-504.	1.9	53
114	Interleukin-27: a novel biomarker in predicting bacterial infection among the critically ill. Critical Care, 2015, 19, 378.	2.5	38
115	Differential expression of the Nrf2-linked genes in pediatric septic shock. Critical Care, 2015, 19, 327.	2.5	7
116	Loss of matrix metalloproteinase-8 is associated with worsened recovery after ischemic kidney injury. Renal Failure, 2015, 37, 469-475.	0.8	11
117	Comparing the prognostic performance of ASSIST to interleukin-6 and procalcitonin in patients with severe sepsis or septic shock. Biomarkers, 2015, 20, 132-135.	0.9	9
118	Developing a Clinically Feasible Personalized Medicine Approach to Pediatric Septic Shock. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 309-315.	2.5	232
119	Clinical Utility of Computed Tomography and Magnetic Resonance Imaging for Diagnosis of Posterior Reversible Encephalopathy Syndrome after Stem Cell Transplantation in Children and Adolescents. Biology of Blood and Marrow Transplantation, 2015, 21, 2028-2032.	2.0	36
120	Personalized medicine, endotypes, and intensive care medicine. Intensive Care Medicine, 2015, 41, 1138-1140.	3.9	9
121	A comprehensive time-course–based multicohort analysis of sepsis and sterile inflammation reveals a robust diagnostic gene set. Science Translational Medicine, 2015, 7, 287ra71.	5.8	271
122	The extracellular stress response to pediatric cardiopulmonary bypass. Journal of Pediatric Intensive Care, 2015, 03, 009-016.	0.4	0
123	Innovation in Pediatric Cardiac Intensive Care. World Journal for Pediatric & Congenital Heart Surgery, 2015, 6, 588-596.	0.3	6
124	Zinc Supplementation in Murine Sepsis. , 2015, , 1123-1133.		0
125	Corticosteroids and Pediatric Septic Shock Outcomes: A Risk Stratified Analysis. PLoS ONE, 2014, 9, e112702.	1.1	56
126	Differential expression of the nuclear-encoded mitochondrial transcriptome in pediatric septic shock. Critical Care, 2014, 18, 623.	2.5	22

#	Article	IF	CITATIONS
127	Biomarkers of sepsis and their potential value in diagnosis, prognosis and treatment. Expert Review of Clinical Immunology, 2014, 10, 1349-1356.	1.3	127
128	Corticosteroids Are Associated with Repression of Adaptive Immunity Gene Programs in Pediatric Septic Shock. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 940-946.	2.5	63
129	Derivation and validation of the renal angina index to improve the prediction of acute kidney injury in critically ill children. Kidney International, 2014, 85, 659-667.	2.6	203
130	The pediatric sepsis biomarker risk model: potential implications for sepsis therapy and biology. Expert Review of Anti-Infective Therapy, 2014, 12, 809-816.	2.0	30
131	Combining Functional and Tubular Damage Biomarkers Improves Diagnostic Precision for Acute Kidney Injury After Cardiac Surgery. Journal of the American College of Cardiology, 2014, 64, 2753-2762.	1.2	160
132	Post-ICU Admission Fluid Balance and Pediatric Septic Shock Outcomes. Critical Care Medicine, 2014, 42, 397-403.	0.4	69
133	Combined Zinc Supplementation With Proinsulin C-Peptide Treatment Decreases the Inflammatory Response and Mortality in Murine Polymicrobial Sepsis. Shock, 2014, 41, 292-300.	1.0	13
134	A Multibiomarker-Based Outcome Risk Stratification Model for Adult Septic Shock*. Critical Care Medicine, 2014, 42, 781-789.	0.4	107
135	Identifying Critically III Patients Who May Benefit From Adjunctive Corticosteroids. Pediatric Critical Care Medicine, 2014, 15, 769-771.	0.2	6
136	Time for a Neonatal-Specific Consensus Definition for Sepsis. Pediatric Critical Care Medicine, 2014, 15, 523-528.	0.2	224
137	Performance of interleukin-27 as a sepsis diagnostic biomarker in critically ill adults. Journal of Critical Care, 2014, 29, 718-722.	1.0	25
138	Gene expression profiling in sepsis: timing, tissue, and translational considerations. Trends in Molecular Medicine, 2014, 20, 204-213.	3.5	107
139	Incorporation of Biomarkers with the Renal Angina Index for Prediction of Severe AKI in Critically III Children. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 654-662.	2.2	125
140	Testing the Prognostic Accuracy of the Updated Pediatric Sepsis Biomarker Risk Model. PLoS ONE, 2014, 9, e86242.	1.1	69
141	The Temporal Version of the Pediatric Sepsis Biomarker Risk Model. PLoS ONE, 2014, 9, e92121.	1.1	36
142	Genomics in Critical Illness. , 2014, , 203-215.		0
143	Zinc Supplementation in Murine Sepsis. , 2014, , 1-12.		0
144	Pediatric Sepsis. Critical Care Clinics, 2013, 29, 203-222.	1.0	36

#	Article	IF	CITATIONS
145	Zinc Detection in Serum by Anodic Stripping Voltammetry on Microfabricated Bismuth Electrodes. Electroanalysis, 2013, 25, 401-407.	1.5	55
146	Metabolomics as a Novel Approach for Early Diagnosis of Pediatric Septic Shock and Its Mortality. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 967-976.	2.5	159
147	Genome-wide expression profiling in pediatric septic shock. Pediatric Research, 2013, 73, 564-569.	1.1	52
148	A Survey of Stated Physician Practices and Beliefs on the Use of Steroids in Pediatric Fluid and/or Vasoactive Infusion-Dependent Shock*. Pediatric Critical Care Medicine, 2013, 14, 462-466.	0.2	39
149	Interleukin 27 as a Sepsis Diagnostic Biomarker in Critically Ill Adults. Shock, 2013, 40, 382-386.	1.0	42
150	Role of Biomarkers in Sepsis Care. Shock, 2013, 40, 358-365.	1.0	113
151	The Congenital Heart Disease Genetic Network Study. Circulation Research, 2013, 112, 698-706.	2.0	142
152	Interleukin-27 as a Sepsis Diagnostic Biomarker in Critically Ill Adults. Shock, 2013, , 1.	1.0	2
153	Plasmapheresis to Treat Hypertriglyceridemia in a Child With Diabetic Ketoacidosis and Pancreatitis. Pediatrics, 2012, 129, e195-e198.	1.0	44
154	Lab-on-a-chip sensor for measuring Zn by stripping voltammetry. , 2012, , .		2
155	A novel role for matrix metalloproteinase-8 in sepsis*. Critical Care Medicine, 2012, 40, 379-387.	0.4	80
156	Prophylactic zinc supplementation reduces bacterial load and improves survival in a murine model of sepsis. Pediatric Critical Care Medicine, 2012, 13, e323-e329.	0.2	53
157	Reduced Peroxisome Proliferator-Activated Receptor α Expression Is Associated With Decreased Survival and Increased Tissue Bacterial Load in Sepsis. Shock, 2012, 37, 164-169.	1.0	68
158	Genetics and genomics in pediatric septic shock. Critical Care Medicine, 2012, 40, 1618-1626.	0.4	81
159	Clinical review: Sepsis and septic shock - the potential of gene arrays. Critical Care, 2012, 16, 204.	2.5	75
160	The pediatric sepsis biomarker risk model. Critical Care, 2012, 16, R174.	2.5	166
161	Interleukin-27 is a novel candidate diagnostic biomarker for bacterial infection in critically ill children. Critical Care, 2012, 16, R213.	2.5	79
162	Circulatory Failure/Shock. , 2012, , 535-551.		0

Circulatory Failure/Shock. , 2012, , 535-551. 162

#	Article	IF	CITATIONS
163	Biomarkers for pediatric sepsis and septic shock. Expert Review of Anti-Infective Therapy, 2011, 9, 71-79.	2.0	146
164	Finding new therapies for sepsis: the need for patient stratification and the use of genetic biomarkers. Critical Care, 2011, 15, 1009.	2.5	3
165	Identification of candidate serum biomarkers for severe septic shock-associated kidney injury via microarray. Critical Care, 2011, 15, R273.	2.5	51
166	The Influence of Developmental Age on the Early Transcriptomic Response of Children with Septic Shock. Molecular Medicine, 2011, 17, 1146-1156.	1.9	195
167	Validation of a gene expression-based subclassification strategy for pediatric septic shock*. Critical Care Medicine, 2011, 39, 2511-2517.	0.4	140
168	Biomarker discovery and development in pediatric critical care medicine*. Pediatric Critical Care Medicine, 2011, 12, 165-173.	0.2	105
169	An update and review of acute kidney injury in pediatrics. Pediatric Critical Care Medicine, 2011, 12, 339-347.	0.2	77
170	The pediatric intensive care unit perspective on monitoring hemodynamics and oxygen transport. Pediatric Critical Care Medicine, 2011, 12, S66-S68.	0.2	11
171	Biological activity of truncated C-terminus human heat shock protein 72. Immunology Letters, 2011, 135, 173-179.	1.1	12
172	The Myeloid Transcription Factor KLF2 Regulates the Host Response to Polymicrobial Infection and Endotoxic Shock. Immunity, 2011, 34, 715-728.	6.6	124
173	Sepsis in the Pediatric Cardiac Intensive Care Unit. World Journal for Pediatric & Congenital Heart Surgery, 2011, 2, 393-399.	0.3	30
174	The Immunomodulatory Effects of AlbuminIn VitroandIn Vivo. Advances in Pharmacological Sciences, 2011, 2011, 1-7.	3.7	14
175	Antecedent acute kidney injury worsens subsequent endotoxin-induced lung inflammation in a two-hit mouse model. American Journal of Physiology - Renal Physiology, 2011, 301, F597-F604.	1.3	12
176	hildren are not Small Adults!". The Open Inflammation Journal, 2011, 4, 4-15.	0.5	58
177	Extracellular Heat Shock Proteins: Alarmins for the Host Immune System. The Open Inflammation Journal, 2011, 4, 49-60.	0.5	48
178	Toward a clinically feasible gene expression-based subclassification strategy for septic shock: Proof of concept. Critical Care Medicine, 2010, 38, 1955-1961.	0.4	84
179	Admission chemokine (C-C motif) ligand 4 levels predict survival in pediatric septic shock*. Pediatric Critical Care Medicine, 2010, 11, 213-216.	0.2	41
180	Genetic association research: Understanding its challenges and limitations*. Pediatric Critical Care Medicine, 2010, 11, 762-763.	0.2	3

#	Article	IF	CITATIONS
181	Pathophysiology and Treatment of Septic Shock in Neonates. Clinics in Perinatology, 2010, 37, 439-479.	0.8	183
182	Changes in peroxisome proliferator-activated receptor-gamma activity in children with septic shock. Intensive Care Medicine, 2010, 36, 123-130.	3.9	37
183	Plasma interleukin-8 is not an effective risk stratification tool for adults with vasopressor-dependent septic shock*. Critical Care Medicine, 2010, 38, 1436-1441.	0.4	40
184	Mechanisms and Regulation of the Gene-Expression Response to Sepsis. Pediatrics, 2010, 125, 1248-1258.	1.0	64
185	The Host Response to Sepsis and Developmental Impact. Pediatrics, 2010, 125, 1031-1041.	1.0	183
186	The United States Critical Illness and Injury Trials Group: An Introduction. Journal of Trauma, 2009, 67, S159-S160.	2.3	5
187	Identification of pediatric septic shock subclasses based on genome-wide expression profiling. BMC Medicine, 2009, 7, 34.	2.3	216
188	Age-related decrease in proteasome expression contributes to defective nuclear factor-κB activation during hepatic ischemia/reperfusion. Hepatology, 2009, 49, 1718-1728.	3.6	38
189	Extracellular Hsp72, an endogenous DAMP, is released by virally infected airway epithelial cells and activates neutrophils via Toll-like receptor (TLR)-4. Respiratory Research, 2009, 10, 31.	1.4	110
190	Genomic expression profiling across the pediatric systemic inflammatory response syndrome, sepsis, and septic shock spectrum*. Critical Care Medicine, 2009, 37, 1558-1566.	0.4	285
191	Zinc homeostasis in pediatric critical illness*. Pediatric Critical Care Medicine, 2009, 10, 29-34.	0.2	653
192	Lung injury after hemorrhage is age dependent: Role of peroxisome proliferator-activated receptor γ*. Critical Care Medicine, 2009, 37, 1978-1987.	0.4	52
193	Critically associating*. Critical Care Medicine, 2009, 37, 1492-1493.	0.4	5
194	Novel Pharmacologic Approaches to the Management of Sepsis: Targeting the Host Inflammatory Response. Recent Patents on Inflammation and Allergy Drug Discovery, 2009, 3, 96-112.	3.9	50
195	Endogenous Cytoprotective Mechanisms. , 2009, , 1-9.		Ο
196	Leukocyte subset-derived genomewide expression profiles in pediatric septic shock*. Pediatric Critical Care Medicine, 2009, 11, 1.	0.2	53
197	Plasma angiopoietin-2 levels increase in children following cardiopulmonary bypass. Intensive Care Medicine, 2008, 34, 1851-1857.	3.9	34
198	Divergence of canonical danger signals: The genome-level expression patterns of human mononuclear cells subjected to heat shock or lipopolysaccharide. BMC Immunology, 2008, 9, 24.	0.9	16

#	Article	IF	CITATIONS
199	Therapeutic effect of epigallocatechin-3-gallate in a mouse model of colitis. European Journal of Pharmacology, 2008, 579, 411-417.	1.7	90
200	Zinc Supplementation in Critically Ill Patients: A Key Pharmaconutrient?. Journal of Parenteral and Enteral Nutrition, 2008, 32, 509-519.	1.3	113
201	Interleukin-8 as a Stratification Tool for Interventional Trials Involving Pediatric Septic Shock. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 276-282.	2.5	129
202	Validating the genomic signature of pediatric septic shock. Physiological Genomics, 2008, 34, 127-134.	1.0	94
203	Activation of hepatocytes by extracellular heat shock protein 72. American Journal of Physiology - Cell Physiology, 2008, 295, C514-C520.	2.1	51
204	HSP27 regulates p53 transcriptional activity in doxorubicin-treated fibroblasts and cardiac H9c2 cells: p21 upregulation and G ₂ /M phase cell cycle arrest. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H1736-H1744.	1.5	52
205	Therapeutic application of intrapericardial tissue plasminogen activator in a 4-month-old child with complex fibropurulent pericarditis. Pediatric Critical Care Medicine, 2008, 9, e1-e4.	0.2	8
206	THE ROLE OF ENDOGENOUSLY PRODUCED EXTRACELLULAR HSP72 IN MONONUCLEAR CELL REPROGRAMMING. Shock, 2008, 30, 285-292.	1.0	18
207	Genetic approach to pediatric septic shock. Personalized Medicine, 2008, 5, 249-263.	0.8	4
208	Serum neutrophil gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with septic shock. Critical Care Medicine, 2008, 36, 1297-1303.	0.4	304
209	PP2A REGULATES UPSTREAM MEMBERS OF THE C-JUN N-TERMINAL KINASE MITOGEN-ACTIVATED PROTEIN KINASE SIGNALING PATHWAY. Shock, 2008, 29, 181-188.	1.0	34
210	INDUCTION OF ENDOTOXIN TOLERANCE ENHANCES BACTERIAL CLEARANCE AND SURVIVAL IN MURINE POLYMICROBIAL SEPSIS. Shock, 2008, 30, 267-273.	1.0	101
211	Genetic Basis of Acute Lung Injury. , 2008, , 207-215.		0
212	Hsp72 Induces Inflammation and Regulates Cytokine Production in Airway Epithelium through a TLR4- and NF-κB-Dependent Mechanism. Journal of Immunology, 2007, 179, 6318-6324.	0.4	104
213	Role of heat shock protein 70 in hepatic ischemia-reperfusion injury in mice. American Journal of Physiology - Renal Physiology, 2007, 292, G1141-G1149.	1.6	52
214	Genome-level expression profiles in pediatric septic shock indicate a role for altered zinc homeostasis in poor outcome. Physiological Genomics, 2007, 30, 146-155.	1.0	221
215	Pediatric septic shock treatment: new clues from genomic profiling. Pharmacogenomics, 2007, 8, 1287-1290.	0.6	19
216	THE GREEN TEA POLYPHENOL EPIGALLOCATECHIN-3-GALLATE IMPROVES SYSTEMIC HEMODYNAMICS AND SURVIVAL IN RODENT MODELS OF POLYMICROBIAL SEPSIS. Shock, 2007, 28, 353-359.	1.0	42

#	Article	IF	CITATIONS
217	Doxorubicin-induced cardiotoxicity: direct correlation of cardiac fibroblast and H9c2 cell survival and aconitase activity with heat shock protein 27. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H3111-H3121.	1.5	60
218	DIVERSE CARDIOPROTECTIVE SIGNALING MECHANISMS OF PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR-Î ³ LIGANDS, 15-DEOXY-Δ12,14-PROSTAGLANDIN J2 AND CIGLITAZONE, IN REPERFUSION INJURY. Shoc 2007, 28, 554-563.	k1.0	56
219	Hepatocyte NF-κB activation is hepatoprotective during ischemia-reperfusion injury and is augmented by ischemic hypothermia. American Journal of Physiology - Renal Physiology, 2007, 292, G201-G207.	1.6	70
220	Genome-Level Longitudinal Expression of Signaling Pathways and Gene Networks in Pediatric Septic Shock. Molecular Medicine, 2007, 13, 495-508.	1.9	114
221	Heat shock response and acute lung injuryâ~†. Free Radical Biology and Medicine, 2007, 42, 1-14.	1.3	114
222	Stimulation of cysteinyl leukotriene production in mast cells by heat shock and acetylsalicylic acid. European Journal of Pharmacology, 2007, 561, 214-219.	1.7	8
223	ADMISSION ANGIOPOIETIN LEVELS IN CHILDREN WITH SEPTIC SHOCK. Shock, 2007, 28, 650-654.	1.0	112
224	Admission angiopoietin levels in children with septic shock. Shock, 2007, 28, 650-654.	1.0	97
225	CpG DNA modulates interleukin 1β-induced interleukin-8 expression in human bronchial epithelial (16HBE140-) cells. Respiratory Research, 2006, 7, 84.	1.4	27
226	Acetylsalicylic acid–induced release of HSP70 from mast cells results in cell activation through TLR pathway. Experimental Hematology, 2006, 34, 8-18.	0.2	50
227	Induction of HSP70 is dispensable for anti-inflammatory action of heat shock or NSAIDs in mast cells. Experimental Hematology, 2006, 34, 414-423.	0.2	17
228	Glutamine's protection against cellular injury is dependent on heat shock factor-1. American Journal of Physiology - Cell Physiology, 2006, 290, C1625-C1632.	2.1	82
229	Intensivist-Led Team Approach to Critical Care of Children With Heart Disease. Pediatrics, 2006, 117, 1854-1856.	1.0	15
230	Adaptation and increased susceptibility to infection associated with constitutive expression of misfolded SP-C. Journal of Cell Biology, 2006, 172, 395-407.	2.3	111
231	Extracellular Heat Shock Protein-70 Induces Endotoxin Tolerance in THP-1 Cells. Journal of Immunology, 2006, 177, 7184-7192.	0.4	131
232	AGE-DEPENDENT RESPONSES TO HEPATIC ISCHEMIA/REPERFUSION INJURY. Shock, 2005, 24, 421-427.	1.0	81
233	CONTRIBUTION OF MKP-1 REGULATION OF p38 TO ENDOTOXIN TOLERANCE. Shock, 2005, 23, 80-87.	1.0	68
234	Extracellular hsp70 levels in children with septic shock*. Pediatric Critical Care Medicine, 2005, 6, 308-311.	0.2	108

#	Article	IF	CITATIONS
235	Translation. Critical Care Medicine, 2005, 33, S404-S406.	0.4	5
236	Endogenous Cytoprotective Mechanisms. Neurolmmune Biology, 2005, , 49-65.	0.2	5
237	Selectively increasing inducible heat shock protein 70 via TAT-protein transduction protects neurons from nitrosative stress and excitotoxicity. Journal of Neurochemistry, 2005, 94, 360-366.	2.1	75
238	Mast cell activation is differentially affected by heat shock. Experimental Hematology, 2005, 33, 944-952.	0.2	15
239	Heat shock-mediated regulation of MKP-1. American Journal of Physiology - Cell Physiology, 2005, 289, C1152-C1158.	2.1	39
240	Epigallocatechin, a Green Tea Polyphenol, Attenuates Myocardial Ischemia Reperfusion Injury in Rats. Molecular Medicine, 2004, 10, 55-62.	1.9	173
241	Epigallocatechin-3-gallate, a Green Tea–Derived Polyphenol, Inhibits IL-1β-Dependent Proinflammatory Signal Transduction in Cultured Respiratory Epithelial Cells. Journal of Nutrition, 2004, 134, 1039-1044.	1.3	135
242	Differential regulation of activator protein-1 and heat shock factor-1 in myocardial ischemia and reperfusion injury: role of poly(ADP-ribose) polymerase-1. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H1408-H1415.	1.5	65
243	Proteasome Inhibitors Induce Inhibitory κB (IκB) Kinase Activation, IκBα Degradation, and Nuclear Factor κB Activation in HT-29 Cells. Molecular Pharmacology, 2004, 65, 342-349.	1.0	45
244	Theaflavin, a black tea extract, is a novel anti-inflammatory compound. Critical Care Medicine, 2004, 32, 2097-2103.	0.4	64
245	Heat shock inhibition of lipopolysaccharide-mediated tumor necrosis factor expression is associated with nuclear induction of MKP-1 and inhibition of mitogen-activated protein kinase activation. Critical Care Medicine, 2004, 32, 2284-2292.	0.4	19
246	Short-term modulation of interleukin-1β signaling by hyperoxia: uncoupling of lκB kinase activation and NF-κB-dependent gene expression. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 286, L554-L562.	1.3	10
247	The Heat Shock Response and Transplantation Immunology. , 2004, , 525-543.		4
248	Molecular genetics in the pediatric intensive care unit. Critical Care Clinics, 2003, 19, 577-594.	1.0	17
249	Pediatric critical care. Critical Care Clinics, 2003, 19, xiii-xiv.	1.0	Ο
250	Intracellular delivery of HSP70 using HIV-1 Tat protein transduction domain. Biochemical and Biophysical Research Communications, 2003, 301, 54-59.	1.0	82
251	Nuclear factor-κB as a therapeutic target in critical care medicine. Critical Care Medicine, 2003, 31, S105-S111.	0.4	170
252	Parthenolide improves systemic hemodynamics and decreases tissue leukosequestration in rats with polymicrobial sepsis*. Critical Care Medicine, 2003, 31, 2263-2270.	0.4	62

#	Article	IF	CITATIONS
253	Parthenolide, an Inhibitor of the Nuclear Factor-κB Pathway, Ameliorates Cardiovascular Derangement and Outcome in Endotoxic Shock in Rodents. Molecular Pharmacology, 2002, 61, 953-963.	1.0	104
254	Absence of inducible nitric oxide synthase modulates early reperfusionâ€induced NFâ€îºB and APâ€1 activation and enhances myocardial damage. FASEB Journal, 2002, 16, 327-342.	0.2	115
255	ABLATION OF THE HEAT SHOCK FACTOR-1 INCREASES SUSCEPTIBILITY TO HYPEROXIA-MEDIATED CELLULAR INJURY. Experimental Lung Research, 2002, 28, 609-622.	0.5	22
256	Inhaled nitric oxide increases endothelin-1 levels: A potential cause of rebound pulmonary hypertension. Critical Care Medicine, 2002, 30, 89-93.	0.4	148
257	Interactions between the heat shock response and the nuclear factor-ήB signaling pathway. Critical Care Medicine, 2002, 30, S89-S95.	0.4	133
258	Heat Shock Inhibits TNF-Induced ICAM-1 Expression in Human Endothelial Cells Via I Kappa Kinase Inhibition. Shock, 2002, 17, 91-97.	1.0	56
259	The Stress Response Decreases NF-??B Activation in Liver of Endotoxemic Mice. Shock, 2002, 18, 33-37.	1.0	24
260	Sesquiterpene Lactone Parthenolide, an Inhibitor of I??B Kinase Complex and Nuclear Factor-??B, Exerts Beneficial Effects in Myocardial Reperfusion Injury. Shock, 2002, 17, 127-134.	1.0	59
261	Heat Shock Inhibits Activation of NF-κB in the Absence of Heat Shock Factor-1. Biochemical and Biophysical Research Communications, 2002, 291, 453-457.	1.0	46
262	ARDS: The future. Critical Care Clinics, 2002, 18, 177-196.	1.0	9
263	Phosphatase inhibition leads to activation of ll̂®B kinase in murine macrophages. Biochemical and Biophysical Research Communications, 2002, 297, 1264-1269.	1.0	11
264	Proteasome inhibitors induce heat shock response and increase IL-6 expression in human intestinal epithelial cells. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 282, R1016-R1026.	0.9	47
265	Temporal and mechanistic effects of heat shock on LPS-mediated degradation of IkappaBalpha in macrophages. Inflammation, 2002, 26, 129-137.	1.7	27
266	A green tea-derived polyphenol, epigallocatechin-3-gallate, inhibits IkappaB kinase activation and IL-8 gene expression in respiratory epithelium. Inflammation, 2002, 26, 233-241.	1.7	97
267	Interactions between the heat shock response and the nuclear factor-kappa B signaling pathway. Critical Care Medicine, 2002, 30, S89-95.	0.4	21
268	Curcumin, a medicinal herbal compound capable of inducing the heat shock response. Critical Care Medicine, 2001, 29, 2199-2204.	0.4	63
269	Intracatheter nitroglycerin infusion fails to prevent catheter-related venous thrombosis: a randomized, controlled trial. Intensive Care Medicine, 2001, 27, 187-192.	3.9	26
270	Usefulness of corticosteroid therapy in decreasing epinephrine requirements in critically ill infants with congenital heart disease. American Journal of Cardiology, 2001, 88, 591-594.	0.7	134

#	Article	IF	CITATIONS
271	The Serine/Threonine Phosphatase, PP2A: Endogenous Regulator of Inflammatory Cell Signaling. Journal of Immunology, 2001, 166, 966-972.	0.4	144
272	Geldanamycin Inhibits NF- κ B Activation and Interleukin-8 Gene Expression in Cultured Human Respiratory Epithelium. American Journal of Respiratory Cell and Molecular Biology, 2001, 25, 92-97.	1.4	38
273	Signal Transduction Pathways in Acute Lung Injury: Nf- $\hat{I}^{0}B$ and Ap-1. , 2001, , 1-16.		3
274	The Heat Shock Response and Heat Shock Protein 70: Cytoprotection in Acute Lung Injury. , 2001, , 275-288.		2
275	Induction of the stress response increases interleukin-6 production in the intestinal mucosa of endotoxaemic mice. Clinical Science, 2000, 99, 489-496.	1.8	28
276	Induction of the stress response increases interleukin-6 production in the intestinal mucosa of endotoxaemic mice. Clinical Science, 2000, 99, 489.	1.8	11
277	HEAT SHOCK INHIBITS PHOSPHORYLATION OF I-κBα. Shock, 2000, 14, 447-450.	1.0	53
278	Hyperoxia synergistically increases TNF-α-induced interleukin-8 gene expression in A549 cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 278, L253-L260.	1.3	34
279	SESQUITERPENE LACTONES ARE POTENT INHIBITORS OF INTERLEUKIN 8 GENE EXPRESSION IN CULTURED HUMAN RESPIRATORY EPITHELIUM. Cytokine, 2000, 12, 239-245.	1.4	62
280	Heat shock proteins. Facts, thoughts, and dreams. Shock, 1999, 12, 323.	1.0	30
281	Hypothermia decreases excitatory neurotransmitter release in bacterial meningitis in rabbits1Published on the World Wide Web on 1 October 1999.1. Brain Research, 1999, 847, 143-148.	1.1	57
282	Sesquiterpene Lactones Inhibit Inducible Nitric Oxide Synthase Gene Expression in Cultured Rat Aortic Smooth Muscle Cells. Biochemical and Biophysical Research Communications, 1999, 262, 375-380.	1.0	79
283	Stress response decreases the interleukin-1l²-induced production of complement component C3 in human intestinal epithelial cells. Clinical Science, 1999, 97, 331-337.	1.8	11
284	Stress response decreases the interleukin-1β-induced production of complement component C3 in human intestinal epithelial cells. Clinical Science, 1999, 97, 331.	1.8	7
285	Induction of the stress response with prostaglandin A 1 increases lâ€₽Bα gene expression. FASEB Journal, 1998, 12, 1371-1378.	0.2	45
286	Melatonin inhibits expression of the inducible isoform of nitric oxide synthase in murine macrophages: role of inhibition of NFIºB activation. FASEB Journal, 1998, 12, 685-693.	0.2	252
287	Increased expression of heat shock protein-70 protects A549 cells against hyperoxia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 275, L836-L841.	1.3	39
288	Nitric oxide decreases surfactant protein A gene expression in H441 cells. Critical Care Medicine, 1998, 26, 1277-1282.	0.4	18

#	Article	IF	CITATIONS
289	Nuclear factor-kappa B and nitric oxide regulating life and death. Critical Care Medicine, 1998, 26, 1470-1471.	0.4	5
290	HEAT SHOCK PROTEIN INDUCTION PROTECTS HUMAN RESPIRATORY EPITHELIUM AGAINST NITRIC OXIDE-MEDIATED CYTOTOXICITY. Shock, 1997, 8, 213-218.	1.0	49
291	The Heat Shock Response Inhibits Inducible Nitric Oxide Synthase Gene Expression by Blocking Iκ-B Degradation and NF-κB Nuclear Translocation. Biochemical and Biophysical Research Communications, 1997, 231, 257-263.	1.0	112
292	Pre-exposure to heat shock inhibits peroxynitrite-induced activation of poly(ADP) ribosyltransferase and protects against peroxynitrite cytotoxicity in J774 macrophages. European Journal of Pharmacology, 1996, 315, 221-226.	1.7	20
293	Cytokine-induced nitric oxide synthase gene transcription is blocked by the heat shock response in human liver cells. Surgery, 1996, 120, 144-149.	1.0	54
294	Cerebrospinal fluid and plasma nitrite and nitrate concentrations after head injury in humans. Critical Care Medicine, 1996, 24, 1243-1251.	0.4	107
295	Plasma bactericidal/permeability-increasing protein concentrations in critically ill children with the sepsis syndrome. Pediatric Infectious Disease Journal, 1995, 14, 1087-1090.	1.1	24
296	Increased serum nitrite and nitrate concentrations in children with the sepsis syndrome. Critical Care Medicine, 1995, 23, 835-842.	0.4	127
297	Improved outcome for young children with AIDS,Pneumocystis carinii pneumonia, and acute respiratory failure. Pediatric Pulmonology, 1994, 18, 114-118.	1.0	11