Stefania Santeusanio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1431095/publications.pdf

Version: 2024-02-01

394421 434195 1,267 83 19 31 citations g-index h-index papers 99 99 99 839 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A facile protocol for the preparation of 2-carboxylated thieno $[2,3-\langle i\rangle b < i\rangle]$ indoles: a $\langle i\rangle$ de novo $\langle i\rangle$ access to alkaloid thienodolin. Organic and Biomolecular Chemistry, 2022, 20, 4167-4175.	2.8	5
2	Easy Access to Indoleâ€based Biâ€Sulfurylateâ€Heterocyclic Scaffolds. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	2
3	FeCl3â€catalyzed formal [3 + 2] cyclodimerization of 4â€carbonylâ€1,2â€diazaâ€1,3â€dienes. European Journal o Organic Chemistry, 2021, 2021, 5202.	of 2.4	3
4	Experimental and Theoretical DFT Investigations in the [2,3]-Wittig-Type Rearrangement of Propargyl/Allyl-Oxy-Pyrazolones. Molecules, 2021, 26, 6557.	3.8	3
5	Synthesis of Azacarbolines via PhIO ₂ -Promoted Intramolecular Oxidative Cyclization of α-Indolylhydrazones. Journal of Organic Chemistry, 2021, 86, 17918-17929.	3.2	9
6	Construction of Unusual Indole-Based Heterocycles from Tetrahydro-1H-pyridazino[3,4-b]indoles. Molecules, 2020, 25, 4124.	3.8	1
7	Metal and Oxidant Free Construction of Substituted―and/or Polycyclic Indoles: A Useful Alternative to Bischler and Related Syntheses. European Journal of Organic Chemistry, 2020, 2020, 5411-5424.	2.4	7
8	Synthesis of new dihydroberberine and tetrahydroberberine analogues and evaluation of their antiproliferative activity on NCI-H1975 cells. Beilstein Journal of Organic Chemistry, 2020, 16, 1606-1616.	2.2	9
9	Metal and Oxidant-Free BrÃ,nsted Acid-Mediated Cascade Reaction to Substituted Benzofurans. Journal of Organic Chemistry, 2019, 84, 10814-10824.	3.2	7
10	Sequential MCR via Staudinger/Aza-Wittig versus Cycloaddition Reaction to Access Diversely Functionalized 1-Amino-1H-Imidazole-2(3H)-Thiones. Molecules, 2019, 24, 3785.	3.8	7
11	A practical and effective method for the N–N bond cleavage of N-amino-heterocycles. Organic Chemistry Frontiers, 2019, 6, 3408-3414.	4.5	8
12	Zn(II)-Catalyzed Addition of Aromatic/Heteroaromatic C(sp2)â€"H to Azoalkenes: A Polarity-Reversed Arylation of Carbonyl Compounds. Organic Letters, 2019, 21, 4388-4391.	4.6	15
13	5-Methylene N-acyl dihydropyridazinium ions as novel Mannich-type acceptors in 1,4 additions of nucleophiles. Organic Chemistry Frontiers, 2018, 5, 1308-1311.	4.5	5
14	1,2â€Diazaâ€1,3â€dieneâ€Based Multicomponent Reactions in Sequential Protocols to Synthesize Arylaminoâ€5â€hydrazonothiopheneâ€3â€carboxylates. European Journal of Organic Chemistry, 2018, 2018, 6548-6556.	2.4	13
15	Synthesis and biological evaluation of novel heteroring-annulated pyrrolino-tetrahydroberberine analogues as antioxidant agents. Bioorganic and Medicinal Chemistry, 2018, 26, 5037-5044.	3.0	12
16	Assembly of fully substituted 2,5-dihydrothiophenes <i>via</i> a novel sequential multicomponent reaction. Organic Chemistry Frontiers, 2018, 5, 2108-2114.	4.5	31
17	Divergent Approach to Thiazolylidene Derivatives: A Perspective on the Synthesis of a Heterocyclic Skeleton from \hat{l}^2 -Amidothioamides Reactivity. Journal of Organic Chemistry, 2017, 82, 9773-9778.	3.2	16
18	Unexpected Synthesis of 2,3,5,6â€Tetrahydroâ€1 <i>H</i> â€pyrrolo[3,4â€ <i>c</i>]pyridineâ€1,3,6â€triones by a Michael Addition/CS ₂ Extrusion/Double Cyclization Sequence. European Journal of Organic Chemistry, 2017, 2017, 6291-6298.	Double 2.4	8

#	Article	IF	CITATIONS
19	N -heterocyclic linkers from 1,2-diaza-1,3-dienes for dye-sensitized solar cells: DFT calculations, synthesis and photovoltaic performance. Dyes and Pigments, 2017, 145, 246-255.	3.7	9
20	Facile, Odourless, Quantitative Synthesis of 3â€Hydroxyâ€3,4â€dihydroâ€2 <i>H</i> à€1,4â€thiazines. Asian Journ Organic Chemistry, 2016, 5, 705-709.	al of 2.7	15
21	Regioselective [1N+2C+2C] Assembly of Fully Decorated Pyrroles from Primary Amines, 1,2â€Diazaâ€1,3â€dienes, and 2,3â€ÂAllenoates. European Journal of Organic Chemistry, 2015, 2015, 7154-7159	9. ^{2.4}	16
22	Access to novel imidazo[1,5-a]pyrazine scaffolds by the combined use of a three-component reaction and a base-assisted intramolecular cyclization. Organic and Biomolecular Chemistry, 2014, 12, 4610-4619.	2.8	3
23	Highly diastereoselective 1,3-dipolar cycloadditions of chiral non-racemic nitrones to 1,2-diaza-1,3-dienes: an experimental and computational investigation. Organic and Biomolecular Chemistry, 2014, 12, 8888-8901.	2.8	14
24	From targeted aza-Michael addition to linked azaheterocyclic scaffolds. Tetrahedron, 2014, 70, 7336-7343.	1.9	8
25	Effect of Hydrogenated Cardanol on the Structure of Model Membranes Studied by EPR and NMR. Langmuir, 2013, 29, 11118-11126.	3.5	16
26	Tandem Aza-Wittig/Carbodiimide-Mediated Annulation Applicable to 1,2-Diaza-1,3-dienes for the One-Pot Synthesis of Fully Substituted 1,2-Diaminoimidazoles. Journal of Organic Chemistry, 2012, 77, 9338-9343.	3.2	22
27	Powerful Approach to Heterocyclic Skeletal Diversity by Sequential Three-Component Reaction of Amines, Isothiocyanates, and 1,2-Diaza-1,3-dienes. Journal of Organic Chemistry, 2012, 77, 1161-1167.	3.2	28
28	Investigation on the reactivity of isoxazol-5-ones towards 1,2-diaza-1,3-dienes: new entry to variously substituted (imidazol-2-yl)acetate and 1,3-oxazin-6-one derivatives. Tetrahedron, 2012, 68, 608-613.	1.9	6
29	1,3,5-Trisubstituted and 5-Acyl-1,3-Disubstituted Hydantoin Derivatives via Novel Sequential Three-Component Reaction. Organic Letters, 2011, 13, 353-355.	4.6	34
30	Synthesis of Functionalized Pyrroles via Catalyst- and Solvent-Free Sequential Three-Component Enamineâ [*] Azoene Annulation. Journal of Organic Chemistry, 2011, 76, 2860-2866.	3.2	72
31	A Novel Assembly of Substituted Pyrroles by Acidâ€Catalyzed Sequential Threeâ€Component Reaction of Amines, Alkynoates, and 1,2â€Diazaâ€1,3â€dienes. Advanced Synthesis and Catalysis, 2011, 353, 1519-1524.	4.3	32
32	Study of the nucleophilic behaviour of N-phenylbenzamidine towards 1,2-diaza-1,3-dienes: domino reactions for imidazole scaffolds. Tetrahedron, 2010, 66, 5121-5129.	1.9	11
33	Direct Access to Variously Substituted 2-Imino-4-thiazolines. Synlett, 2010, 2010, 1859-1861.	1.8	2
34	Efficient, High-Yield, One-Pot Protocol for the Synthesis of 1,2,4-Oxadiazine Derivatives. Synlett, 2009, 2009, 1583-1586.	1.8	5
35	Cultivating the Passion to Build Heterocycles from 1,2â€Diazaâ€1,3â€dienes: the Force of Imagination. European Journal of Organic Chemistry, 2009, 2009, 3109-3127.	2.4	139
36	A Novel and Convenient Protocol for Synthesis of Pyridazines. Organic Letters, 2009, 11, 309-312.	4.6	45

#	Article	IF	CITATIONS
37	One-Pot Synthesis of Spiro Pyrroloimidazoles and 2-Arylimidazoles from 1,2-Diaza-1,3-butadienes and Arylamidines. Synlett, 2007, 2007, 1691-1694.	1.8	0
38	Divergent and solvent dependent reactions of 4-ethoxycarbonyl-3-methyl-1-tert-butoxycarbonyl-1,2-diaza-1,3-diene with enamines. Tetrahedron, 2007, 63, 11055-11065.	1.9	28
39	An Alternative Route to Pyrrolotriazoles and other N-Bridgehead Heterocycles. Synlett, 2006, 2006, 1734-1738.	1.8	O
40	Different Behavior of the Reaction between 1,2-Diaza-1,3-butadienes and 1,2-Diamines under Solvent or Solvent-Free Conditions. Synlett, 2005, 2005, 1474-1476.	1.8	1
41	Efficient Synthesis and Environmentally Friendly Reactions of PEG-Supported 1,2-Diaza-1,3-butadiene. Organic Letters, 2005, 7, 2469-2471.	4.6	26
42	Expeditious Synthesis of 1,2-Diaminoimidazoles under Solvent-Free Conditions. Synlett, 2004, 2004, 549-551.	1.8	0
43	Facile and High-Yielding Direct Synthesis of 2-Alkyliminothiazolines. Synlett, 2004, 2004, 1643-1645.	1.8	1
44	Efficient Synthesis of Novel Polyfunctionalised 4,5′-Bithiazol-4′-ol Derivatives. Synlett, 2004, 2004, 2681-2684.	1.8	0
45	Synthesis of 2-Iminothiazoline Derivatives by Sequential Conjugate Addition/Annulation/Ring-Opening Reactions ChemInform, 2004, 35, no.	0.0	0
46	Access to New 2-Oxofuro [2,3-b] pyrroles and 2-Methylenepyrroles through the Reaction of 1,2-Diaza-1,3-butadienes and \hat{l}^3 -Ketoesters. Journal of Organic Chemistry, 2004, 69, 2686-2692.	3.2	20
47	Expeditious Synthesis of New 1,2,3-Thiadiazoles and 1,2,3-Selenadiazoles from 1,2-Diaza-1,3-butadienes via Hurdâ^'Mori-Type Reactions. Journal of Organic Chemistry, 2003, 68, 1947-1953.	3.2	28
48	Straightforward Entry into 5-Hydroxy-1-aminopyrrolines and the Corresponding Pyrroles from 1,2-Diaza-1,3-butadienes ChemInform, 2003, 34, no.	0.0	0
49	Expeditious Synthesis of New 1,2,3-Thiadiazoles and 1,2,3-Selenadiazoles from 1,2-Diaza-1,3-butadienes via Hurd—Mori-Type Reactions ChemInform, 2003, 34, no.	0.0	0
50	Synthesis of 2-iminothiazoline derivatives by sequential conjugate addition/annulation/ring-opening reactions. Tetrahedron Letters, 2003, 44, 8391-8394.	1.4	14
51	Improved Synthesis of SubstitutedQuinoxalines from New N=N-Polymer-bound 1,2-Diaza-1,3-butadienes. Synlett, 2003, 2003, 1183-1185.	1.8	6
52	Eclectic 1-Aryl-1,2-diazabuta-1,3-dienes: Valuable Tools for the Preparation of Pyrrol-2-ones, 1-Arylpyrazoles, 2-(3-Oxopyrazol-4-yl)malonates and 4-(2-Oxopyrrol-3-yl)pyrazol-3-ones. Synthesis, 2002, 2002, 1546-1552.	2.3	2
53	Straightforward Entry into 5-Hydroxy-1-aminopyrrolines and the Corresponding Pyrroles from 1,2-Diaza-1,3-butadienes. Journal of Organic Chemistry, 2002, 67, 8178-8181.	3.2	31
54	1,2-Diaza-1,3-Butadienes: A New Approach to the Synthesis of Selenoheterocycles. European Journal of Organic Chemistry, 2002, 2002, 2323.	2.4	11

#	Article	IF	Citations
55	Mass spectrometric studies of 2-aryl-5-acetylthiazole derivatives. Journal of Mass Spectrometry, 2002, 37, 169-178.	1.6	4
56	Mass spectrometric characterization of substituted 2-thiazolin-4-one derivatives. Journal of Mass Spectrometry, 2002, 37, 709-715.	1.6	5
57	A New Convenient Liquid- and Solid-Phase Synthesis of Quinoxalines from (E)-3-Diazenylbut-2-enes. Helvetica Chimica Acta, 2001, 84, 2379-2386.	1.6	23
58	Regioselective role of the hydrazide moiety in the formation of complex pyrrole–pyrazole systems. Tetrahedron, 2001, 57, 1387-1394.	1.9	16
59	Regioselective Synthesis of Stable 2-(Trifluoromethyl)-2,3-dihydro-1H-pyrrol-2-ols and Derived Fluorinated Heterocycles. Synthesis, 2001, 2001, 1837-1845.	2.3	16
60	Sequential Construction of Complex Pyrrole-Pyrrole or Pyrrole-Pyrazole Systems from 1,2-Diaza-1,3-butadienes. Synlett, 1999, 1999, 1367-1370.	1.8	8
61	Efficient Simultaneous Closure of Polysubstituted 1-Aminopyrrole Rings Spaced by a Variable Number of Methylene Groups. Synlett, 1999, 1999, 339-341.	1.8	7
62	Study of reactions between 1,2-diaza-1,3-butadienes and N,N′-diaryl- or N,N′-dialkylthioureas. Tetrahedron, 1999, 55, 13423-13444.	1.9	20
63	Synthesis of biphenylyltetrazole derivatives of 1-aminopyrroles as angiotensin II antagonists. Il Farmaco, 1999, 54, 64-76.	0.9	14
64	2-Substituted 5-Acetyl-4-Thiazolyl Triflates as Useful Building Blocks for the Preparation of Functionalized Thiazoles. European Journal of Organic Chemistry, 1999, 1999, 3117-3126.	2.4	25
65	Pyrido [3,4-c]Thiazoles through Combined Palladium-Catalysed Coupling of 2-Substituted-5-acetyl-4-thiazolyltriflates with Alkynes/Annulation Reactions. Chemistry Letters, 1999, 28, 59-60.	1.3	17
66	tert-Butyl 2-{1-[2-Aryl-4-oxothiazol-5- (4H)-ylidene]ethyl}diazene-1-carboxyl- ates: A New Class of 1,2-Diaza-1,3- butadienes. Heterocycles, 1999, 51, 2423.	0.7	6
67	Chemo, regio, and stereoselectivity in olefination of hydrazone 1,4-adducts between conjugated azoalkenes and sulphur co-activated methylene compounds. Tetrahedron, 1998, 54, 7581-7594.	1.9	9
68	Cleavage and reactions of some NH-BOC protected 1-aminopyrroles: a new one-pot route to pyrrolo[1,2-b][1,2,4]triazines together with spectroscopic and X-ray studies. Journal of the Chemical Society Perkin Transactions 1, 1997, , 1829-1836.	0.9	26
69	Synthesis of 3-Unsubstituted-1-aminopyrroles. Heterocycles, 1996, 43, 1447.	0.7	12
70	Expeditious Synthesis of Substituted 2-Thiazolin-4-ones by One-Pot Reaction of Some Conjugated Azoalkenes with Thioamides. Synthesis, 1995, 1995, 1397-1400.	2.3	18
71	Simple, High-Yield Synthesis of Unsymmetrically Functionalized Bishydrazone and α-Azinohydrazone Derivatives by Reaction of Alkoxy- and Aminocarbonylazoalkenes with Tosylhydrzones. Synthesis, 1994, 1994, 372-374.	2.3	4
72	TREATMENT OF CONJUGATED AZOALKENES WITH N-ACYL-N'-TOSYLHYDRAZIDES. A USEFUL ENTRY TO ASYMMETRIC bis-ACYLHYDRAZONES. Organic Preparations and Procedures International, 1994, 26, 485-488.	1.3	4

#	Article	IF	CITATIONS
73	Conjugated azoalkenes. Part XVI. Reaction of some conjugated azoalkenes with \hat{l}^2 -nitrocarbonyl derivatives Tetrahedron, 1993, 49, 7027-7036.	1.9	13
74	Conjugated azoalkenes. Part 14. Synthesis of new 1-amino- and 1,2-diaminopyrrole derivatives by reaction of some conjugated azoalkenes with activated methylene compounds RCH2Ac and RCH2CN (R) Tj $ETQq$	0 0.9 rgBT	/ © verlock ∶
75	Conjugated azoalkenes. Part 13. Facile and high-yield synthesis of new 1-amino-3-cyano-2,3-dihydropyrrol-2-ols and 1-amino-3-cyano-1H-pyrrol-2(3H)-ones. Journal of the Chemical Society Perkin Transactions 1, 1992, , 3099.	0.9	5
76	Conjugated azoalkenes. Part 12. Synthesis of new 1-amino-3-cyanopyrrole, 1,2-diaminopyrrole and pyrrolo [2,3-b] pyrrole derivatives by reaction of some conjugated azoalkenes with activated nitriles. Journal of the Chemical Society Perkin Transactions 1, 1992, , 1009.	0.9	9
77	Conjugated azoalkenes. Part 8. Reaction of some conjugated azoalkenes with activated nitriles. Synthesis of new pyrrolo[2,3-b]pyrroles and 1,2-diaminopyrroles. X-Ray molecular structure of diethyl 6-amino-1,6-bis-(t-butoxycarbonylamino)-3a-cyano-2,5-dimethyl-1,3a,6,6a-tetrahydropyrrolo-[2,3-b]pyrrole-3,4-dic lournal of the Chemical Society Perkin Transactions 1, 1990, , 1669.	arboxylate	.9
78	Conjugated azoalkenes. Part VI. α-Olefinated carbonyl derivatives by treatment of azoalkenes with carbomethoxymethylene triphenylphosphorane. Tetrahedron Letters, 1988, 29, 5787-5788.	1.4	9
79	Effect of Metal lons in Organic Synthesis: XXXII. Copper(II) Chloride-Catalyzed Synthesis of New 1-Ureido-3-sulfonylpyrroles. Synthesis, 1987, 1987, 381-383.	2.3	9
80	Synthesis of New 1-Alkoxycarbonylamino-3-sulfonylpyrroles by Reaction of (Alkoxycarbonylazo)alkenes with \hat{I}^2 -Keto Sulfones. Bulletin of the Chemical Society of Japan, 1986, 59, 3332-3334.	3.2	9
81	Effect of Metal lons in Organic Synthesis; Part XXVII. Synthesis of 3-Acyl- and 3-Alkoxycarbonyl-1-ureidopyrroles by Copper(II) Chloride-Catalyzed Reaction of Aminocarbonylazoalkenes with \hat{I}^2 -Diketones and \hat{I}^2 -Ketoesters. Synthesis, 1985, 1985, 157-158.	2.3	21
82	Effect of Metal lons in Organic Synthesis; Part XXIV. Facile One-Flask Synthesis of 1-Alkoxycarbonylamino-3-aminocarbonylpyrroles by Reaction of Alkoxycarbonylazoalkenes with 3-Oxoalkanamides under Copper(II) Chloride Catalysis. Synthesis, 1984, 1984, 873-874.	2.3	57
83	Effect of Metal Ions in Organic Synthesis; Part XXIII. Easy and High-Yield Direct Synthesis of 3-Aminocarbonyl-1-ureidopyrroles by the Copper(II) Chloride-Catalyzed Reaction of Aminocarbonylazoalkenes with 3-Oxoalkanamides. Synthesis, 1984, 1984, 671-672.	2.3	71