Enrico Scoccimarro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1431065/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Future projections of Mediterranean cyclone characteristics using the Med-CORDEX ensemble of coupled regional climate system models. Climate Dynamics, 2022, 58, 2501-2524.	3.8	22
2	Evaluation of the capability of regional climate models in reproducing the temporal clustering in heavy precipitation over Europe. Atmospheric Research, 2022, 269, 106027.	4.1	3
3	CMIP6 Simulations With the CMCC Earth System Model (CMCCâ€ESM2). Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	75
4	Extreme events representation in CMCC-CM2 standard and high-resolution general circulation models. Geoscientific Model Development, 2022, 15, 1841-1854.	3.6	4
5	The health potential of urban water: Future scenarios on local risks and opportunities. Cities, 2022, 125, 103639.	5.6	7
6	Examining the precipitation associated with medicanes in the <scp>highâ€resolution ERA</scp> â€5 reanalysis data. International Journal of Climatology, 2021, 41, E126.	3.5	24
7	Air-Sea interaction over the Gulf Stream in an ensemble of HighResMIP present climate simulations. Climate Dynamics, 2021, 56, 2093-2111.	3.8	25
8	The Importance of Marine Research Infrastructures in Capturing Processes and Impacts of Extreme Events. Frontiers in Marine Science, 2021, 8, .	2.5	10
9	Evaluation of trends in extreme temperatures simulated by HighResMIP models across Europe. Climate Dynamics, 2021, 56, 2389-2412.	3.8	8
10	Tropical cyclone precipitation in the HighResMIP atmosphere-only experiments of the PRIMAVERA Project. Climate Dynamics, 2021, 57, 253-273.	3.8	23
11	The Pacific Decadal Oscillation Modulates Tropical Cyclone Days on the Interannual Timescale in the North Pacific Ocean. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034988.	3.3	6
12	Reduced extremes of subâ€daily temperature swings during the boreal summer in the Northern Hemisphere. International Journal of Climatology, 2020, 40, 1306-1315.	3.5	0
13	Azimuthally Averaged Wind and Thermodynamic Structures of Tropical Cyclones in Global Climate Models and Their Sensitivity to Horizontal Resolution. Journal of Climate, 2020, 33, 1575-1595.	3.2	20
14	Impact of Higher Spatial Atmospheric Resolution on Precipitation Extremes Over Land in Global Climate Models. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032184.	3.3	69
15	Heavy precipitation events over East Africa in a changing climate: results from CORDEX RCMs. Climate Dynamics, 2020, 55, 993-1009.	3.8	43
16	Projected Future Changes in Tropical Cyclones Using the CMIP6 HighResMIP Multimodel Ensemble. Geophysical Research Letters, 2020, 47, e2020GL088662.	4.0	119
17	Characteristics of Model Tropical Cyclone Climatology and the Large-Scale Environment. Journal of Climate, 2020, 33, 4463-4487.	3.2	42
18	The typhoon-induced drying of the Maritime Continent. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3983-3988.	7.1	15

ENRICO SCOCCIMARRO

#	Article	IF	CITATIONS
19	Impact of Model Resolution on Tropical Cyclone Simulation Using the HighResMIP–PRIMAVERA Multimodel Ensemble. Journal of Climate, 2020, 33, 2557-2583.	3.2	141
20	Influence of model resolution on bomb cyclones revealed by HighResMIP-PRIMAVERA simulations. Environmental Research Letters, 2020, 15, 084001.	5.2	12
21	Heavy Daily Precipitation Events in the CMIP6 Worst-Case Scenario: Projected Twenty-First-Century Changes. Journal of Climate, 2020, 33, 7631-7642.	3.2	27
22	The Moisture Budget of Tropical Cyclones in HighResMIP Models: Large-Scale Environmental Balance and Sensitivity to Horizontal Resolution. Journal of Climate, 2020, 33, 8457-8474.	3.2	19
23	Past long-term summer warming over western Europe in new generation climate models: role of large-scale atmospheric circulation. Environmental Research Letters, 2020, 15, 084038.	5.2	5
24	Global Mean Climate and Main Patterns of Variability in the CMCCâ€CM2 Coupled Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 185-209.	3.8	202
25	Projected changes in extreme precipitation at sub-daily and daily time scales. Clobal and Planetary Change, 2019, 182, 103004.	3.5	22
26	Adaptation and sustainability of water management for rice agriculture in temperate regions: The Italian caseâ€study. Land Degradation and Development, 2019, 30, 2033-2047.	3.9	26
27	The effects of meteorological conditions and daylight on nature-based recreational physical activity in England. Urban Forestry and Urban Greening, 2019, 42, 39-50.	5.3	19
28	Sea-ice algal phenology in a warmer Arctic. Science Advances, 2019, 5, eaav4830.	10.3	87
29	Annual Green Water Resources and Vegetation Resilience Indicators: Definitions, Mutual Relationships, and Future Climate Projections. Remote Sensing, 2019, 11, 2708.	4.0	14
30	Mediterranean extreme precipitation: a multi-model assessment. Climate Dynamics, 2018, 51, 901-913.	3.8	20
31	The Benefits of Clobal High Resolution for Climate Simulation: Process Understanding and the Enabling of Stakeholder Decisions at the Regional Scale. Bulletin of the American Meteorological Society, 2018, 99, 2341-2359.	3.3	107
32	Remote subsurface ocean temperature as a predictor of Atlantic hurricane activity. Proceedings of the United States of America, 2018, 115, 11460-11464.	7.1	11
33	Thinning Can Reduce Losses in Carbon Use Efficiency and Carbon Stocks in Managed Forests Under Warmer Climate. Journal of Advances in Modeling Earth Systems, 2018, 10, 2427-2452.	3.8	56
34	Hydrologically Induced Karst Deformation: Insights From GPS Measurements in the Adriaâ€Eurasia Plate Boundary Zone. Journal of Geophysical Research: Solid Earth, 2018, 123, 4413-4430.	3.4	34
35	Extreme precipitation events over north-western Europe: getting water from the tropics. Annals of Geophysics, 2018, 61, .	1.0	5
36	Tropical Cyclone Interaction with the Ocean: The Role of High-Frequency (Subdaily) Coupled Processes. Journal of Climate, 2017, 30, 145-162.	3.2	43

ENRICO SCOCCIMARRO

#	Article	IF	CITATIONS
37	Assessing Climate Change Impacts on Wildfire Exposure in Mediterranean Areas. Risk Analysis, 2017, 37, 1898-1916.	2.7	72
38	Western North Pacific Tropical Cyclone Model Tracks in Present and Future Climates. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9721-9744.	3.3	54
39	Stronger influences of increased CO ₂ on subdaily precipitation extremes than at the daily scale. Geophysical Research Letters, 2017, 44, 7464-7471.	4.0	19
40	Atlantic multi-decadal oscillation influence on weather regimes over Europe and the Mediterranean in spring and summer. Global and Planetary Change, 2017, 151, 92-100.	3.5	44
41	The effect on simulated ocean climate of a parameterization of unbroken waveâ€induced mixing incorporated into the kâ€epsilon mixing scheme. Journal of Advances in Modeling Earth Systems, 2017, 9, 735-758.	3.8	13
42	The role of humidity in determining scenarios of perceived temperature extremes in Europe. Environmental Research Letters, 2017, 12, 114029.	5.2	14
43	Tropical Cyclone Rainfall Changes in a Warmer Climate. , 2017, , 243-255.		7
44	Discussing the role of tropical and subtropical moisture sources in cold season extreme precipitation events in the Mediterranean region from a climate change perspective. Natural Hazards and Earth System Sciences, 2016, 16, 269-285.	3.6	19
45	High Resolution Model Intercomparison Project (HighResMIPÂv1.0) for CMIP6. Geoscientific Model Development, 2016, 9, 4185-4208.	3.6	643
46	Global assessment of heat wave magnitudes from 1901 to 2010 and implications for the river discharge of the Alps. Science of the Total Environment, 2016, 571, 1330-1339.	8.0	67
47	Heavy precipitation events over the Euro-Mediterranean region in a warmer climate: results from CMIP5 models. Regional Environmental Change, 2016, 16, 595-602.	2.9	57
48	Projected Changes in Discharge in an Agricultural Watershed in Iowa. Journal of the American Water Resources Association, 2015, 51, 1361-1371.	2.4	16
49	Hurricanes and Climate: The U.S. CLIVAR Working Group on Hurricanes. Bulletin of the American Meteorological Society, 2015, 96, 997-1017.	3.3	158
50	Hurricanes and Climate: The U.S. CLIVAR Working Group on Hurricanes. Bulletin of the American Meteorological Society, 2015, 96, 1440.	3.3	2
51	Projected Changes in Intense Precipitation over Europe at the Daily and Subdaily Time Scales*. Journal of Climate, 2015, 28, 6193-6203.	3.2	34
52	Cluster Analysis of Downscaled and Explicitly Simulated North Atlantic Tropical Cyclone Tracks. Journal of Climate, 2015, 28, 1333-1361.	3.2	51
53	On the Internal Variability of Simulated Daily Precipitation*. Journal of Climate, 2015, 28, 3624-3630.	3.2	11
54	Observed shift towards earlier spring discharge in the main Alpine rivers. Science of the Total Environment, 2015, 503-504, 222-232.	8.0	27

ENRICO SCOCCIMARRO

#	Article	IF	CITATIONS
55	Intense Precipitation Events Associated with Landfalling Tropical Cyclones in Response to a Warmer Climate and Increased CO2. Journal of Climate, 2014, 27, 4642-4654.	3.2	81
56	Sensitivity of Tropical Cyclone Rainfall to Idealized Global-Scale Forcings*. Journal of Climate, 2014, 27, 4622-4641.	3.2	98
57	Tracking Scheme Dependence of Simulated Tropical Cyclone Response to Idealized Climate Simulations. Journal of Climate, 2014, 27, 9197-9213.	3.2	86
58	Characteristics of tropical cyclones in highâ€resolution models in the present climate. Journal of Advances in Modeling Earth Systems, 2014, 6, 1154-1172.	3.8	111
59	Future Climate Projections. Advances in Global Change Research, 2013, , 53-118.	1.6	24
60	The CIRCE Simulations: Regional Climate Change Projections with Realistic Representation of the Mediterranean Sea. Bulletin of the American Meteorological Society, 2013, 94, 65-81.	3.3	147
61	Decadal climate predictions with a coupled OAGCM initialized with oceanic reanalyses. Climate Dynamics, 2013, 40, 1483-1497.	3.8	53
62	Resolution dependence of tropical cyclone formation in CMIP3 and finer resolution models. Climate Dynamics, 2013, 40, 585-599.	3.8	73
63	Projections of global changes in precipitation extremes from Coupled Model Intercomparison Project Phase 5 models. Geophysical Research Letters, 2013, 40, 4887-4892.	4.0	120
64	Projections of heavy rainfall over the central United States based on <scp>CMIP5</scp> models. Atmospheric Science Letters, 2013, 14, 200-205.	1.9	25
65	Atlantic influence on spring snowfall over the Alps in the past 150 years. Environmental Research Letters, 2013, 8, 034026.	5.2	22
66	Heavy Precipitation Events in a Warmer Climate: Results from CMIP5 Models. Journal of Climate, 2013, 26, 7902-7911.	3.2	125
67	Future projections of the surface heat and water budgets of the Mediterranean Sea in an ensemble of coupled atmosphere–ocean regional climate models. Climate Dynamics, 2012, 39, 1859-1884.	3.8	68
68	Tropical cyclone effects on Arctic Sea ice variability. Geophysical Research Letters, 2012, 39, .	4.0	15
69	Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario. Climate Dynamics, 2011, 37, 1929-1947.	3.8	74
70	Tropical Cyclone Count Forecasting Using a Dynamical Seasonal Prediction System: Sensitivity to Improved Ocean Initialization. Journal of Climate, 2011, 24, 2963-2982.	3.2	19
71	Effects of Tropical Cyclones on Ocean Heat Transport in a High-Resolution Coupled General Circulation Model. Journal of Climate, 2011, 24, 4368-4384.	3.2	296
72	The role of mean ocean salinity in climate. Dynamics of Atmospheres and Oceans, 2010, 49, 108-123.	1.8	25

#	Article	IF	CITATIONS
73	The Tropical Cyclone Climate Model Intercomparison Project. , 2010, , 1-24.		11
74	Changes in Tropical Cyclone Activity due to Global Warming in a General Circulation Model. , 2009, , 287-321.		0
75	NAO–ocean circulation interactions in a coupled general circulation model. Climate Dynamics, 2008, 31, 759-777.	3.8	40
76	Changes in Tropical Cyclone Activity due to Global Warming: Results from a High-Resolution Coupled General Circulation Model. Journal of Climate, 2008, 21, 5204-5228.	3.2	173
77	Very Large Ensemble Ocean Forecasting Experiment Using the Grid Computing Infrastructure. Bulletin of the American Meteorological Society, 2008, 89, 799-804.	3.3	11
78	Improved near real-time data management procedures for the Mediterranean ocean Forecasting System-Voluntary Observing Ship program. Annales Geophysicae, 2003, 21, 49-62.	1.6	28
79	Changes in Tropical Cyclone Activity Due to Global Warming: Results from a High-Resolution Coupled General Circulation Model. SSRN Electronic Journal, 0, , .	0.4	7
80	INGV-CMCC Carbon (ICC): A Carbon Cycle Earth System Model. SSRN Electronic Journal, 0, , .	0.4	45