Paul F Lambert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1429104/publications.pdf

Version: 2024-02-01

		94433	98798
111	5,199	37	67
papers	citations	h-index	g-index
116	116	116	F.400
116	116	116	5429
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	AlB1 is a novel target of the highâ€risk HPV E6 protein and a biomarker of cervical cancer progression. Journal of Medical Virology, 2022, 94, 3962-3977.	5.0	4
2	A Novel In Vivo Model of Laryngeal Papillomavirus-Associated Disease Using Mus musculus Papillomavirus. Viruses, 2022, 14, 1000.	3.3	5
3	Merkel cell polyomavirus large T antigen binding to pRb promotes skin hyperplasia and tumor development. PLoS Pathogens, 2022, 18, e1010551.	4.7	9
4	Expanded Basal Compartment and Disrupted Barrier in Vocal Fold Epithelium Infected with Mouse Papillomavirus MmuPV1. Viruses, 2022, 14, 1059.	3.3	1
5	Stress Keratin 17 Expression in Head and Neck Cancer Contributes to Immune Evasion and Resistance to Immune-Checkpoint Blockade. Clinical Cancer Research, 2022, 28, 2953-2968.	7.0	12
6	Stress keratin 17 as a novel biomarker of response in immune checkpoint blockade–treated head and neck squamous cell carcinoma Journal of Clinical Oncology, 2022, 40, 3117-3117.	1.6	0
7	Inherited DNA Repair Defects Disrupt the Structure and Function of Human Skin. Cell Stem Cell, 2021, 28, 424-435.e6.	11.1	10
8	Patient-Derived Organotypic Epithelial Rafts Model Phenotypes in Juvenile-Onset Recurrent Respiratory Papillomatosis. Viruses, 2021, 13, 68.	3.3	11
9	A Novel In Vitro Culture Model System to Study Merkel Cell Polyomavirus–Associated MCC Using Three-Dimensional Organotypic Raft Equivalents of Human Skin. Viruses, 2021, 13, 138.	3.3	6
10	HIV-1 Protease Inhibitors Slow HPV16-Driven Cell Proliferation through Targeted Depletion of Viral E6 and E7 Oncoproteins. Cancers, 2021, 13, 949.	3.7	17
11	The vaginal and fecal microbiota of a murine cervical carcinoma model under synergistic effect of $17\hat{l}^2$ -Estradiol and E7 oncogene expression. Microbial Pathogenesis, 2021, 152, 104763.	2.9	3
12	Estrogen Receptor-α Suppresses Liver Carcinogenesis and Establishes Sex-Specific Gene Expression. Cancers, 2021, 13, 2355.	3.7	19
13	Role of IQGAP1 in Papillomavirus-Associated Head and Neck Tumorigenesis. Cancers, 2021, 13, 2276.	3.7	8
14	Expression of miR-34a and miR-15b during the progression of cervical cancer in a murine model expressing the HPV16 E7 oncoprotein. Journal of Physiology and Biochemistry, 2021, 77, 547-555.	3.0	5
15	Vitamin A deficiency in K14E7HPV expressing transgenic mice facilitates the formation of malignant cervical lesions. Apmis, 2021, 129, 512-523.	2.0	3
16	A Novel Model for Papillomavirus-Mediated Anal Disease and Cancer Using the Mouse Papillomavirus. MBio, 2021, 12, e0161121.	4.1	13
17	Directed differentiation of human pluripotent stem cells into epidermal stem and progenitor cells. Molecular Biology Reports, 2021, 48, 6213-6222.	2.3	4
18	Mouse papillomavirus type 1 (MmuPV1) DNA is frequently integrated in benign tumors by microhomology-mediated end-joining. PLoS Pathogens, 2021, 17, e1009812.	4.7	12

#	Article	IF	Citations
19	Role of IQGAP1 in Carcinogenesis. Cancers, 2021, 13, 3940.	3.7	24
20	The Mus musculus Papillomavirus Type $1\mathrm{E7}$ Protein Binds to the Retinoblastoma Tumor Suppressor: Implications for Viral Pathogenesis. MBio, 2021, 12, e0227721.	4.1	6
21	The Merkel Cell Polyomavirus T Antigens Function as Tumor Promoters in Murine Skin. Cancers, 2021, 13, 222.	3.7	8
22	\hat{l} "Np63 \hat{l} ± promotes Epstein-Barr virus latency in undifferentiated epithelial cells. PLoS Pathogens, 2021, 17, e1010045.	4.7	8
23	A PI3K/AKT Scaffolding Protein, IQ Motif–Containing GTPase Associating Protein 1 (IQGAP1), Promotes Head and Neck Carcinogenesis. Clinical Cancer Research, 2020, 26, 301-311.	7.0	20
24	Viruses and Human Cancer., 2020, , 165-179.e7.		1
25	The human papillomavirus 16 E5 gene potentiates MmuPV1-Dependent pathogenesis. Virology, 2020, 541, 1-12.	2.4	11
26	Life Beyond COVID: Pay Attention to Viruses. International Journal of Radiation Oncology Biology Physics, 2020, 108, 348-350.	0.8	0
27	An Infection-Based Murine Model for Papillomavirus-Associated Head and Neck Cancer. MBio, 2020, $11,\ldots$	4.1	26
28	Mus musculus Papillomavirus 1: a New Frontier in Animal Models of Papillomavirus Pathogenesis. Journal of Virology, 2020, 94, .	3.4	25
29	Cell-penetrating peptide inhibits retromer-mediated human papillomavirus trafficking during virus entry. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6121-6128.	7.1	30
30	Cooperation of genes in HPV16 <i>E6/E7</i> dependent cervicovaginal carcinogenesis trackable by endoscopy and independent of exogenous estrogens or carcinogens. Carcinogenesis, 2020, 41, 1605-1615.	2.8	8
31	Reactivation of Epstein-Barr Virus by HIF-1α Requires p53. Journal of Virology, 2020, 94, .	3.4	12
32	Stress keratin 17 enhances papillomavirus infection-induced disease by downregulating T cell recruitment. PLoS Pathogens, 2020, 16, e1008206.	4.7	27
33	A Mouse Model of Oropharyngeal Papillomavirus-Induced Neoplasia Using Novel Tools for Infection and Nasal Anesthesia. Viruses, 2020, 12, 450.	3.3	12
34	A highway to carcinogenesis: the role of IQGAP1, a signaling scaffolding protein, in head and neck cancer development. Oncoscience, 2020, 7, 49-51.	2.2	3
35	Effects of culture method on response to EGFR therapy in head and neck squamous cell carcinoma cells. Scientific Reports, 2019, 9, 12480.	3.3	30
36	The Specificity of EGF-Stimulated IQGAP1 Scaffold Towards the PI3K-Akt Pathway is Defined by the IQ3 motif. Scientific Reports, 2019, 9, 9126.	3.3	26

#	Article	IF	CITATIONS
37	A Human Papillomavirus-Independent Cervical Cancer Animal Model Reveals Unconventional Mechanisms of Cervical Carcinogenesis. Cell Reports, 2019, 26, 2636-2650.e5.	6.4	49
38	A Novel $\mbox{\sc i>In Vivo}$ Infection Model To Study Papillomavirus-Mediated Disease of the Female Reproductive Tract. MBio, 2019, 10, .	4.1	45
39	Activating Mutations in <i>Pik3ca</i> Contribute to Anal Carcinogenesis in the Presence or Absence of HPV-16 Oncogenes. Clinical Cancer Research, 2019, 25, 1889-1900.	7.0	24
40	Sexual transmission of murine papillomavirus (MmuPV1) in Mus musculus. ELife, 2019, 8, .	6.0	23
41	Calcium-activated potassium channels as potential early markers of human cervical cancer. Oncology Letters, 2018, 15, 7249-7254.	1.8	16
42	Development of an in vivo infection model to study Mouse papillomavirus-1 (MmuPV1). Journal of Virological Methods, 2018, 253, 11-17.	2.1	18
43	Lipidomic Profiling Links the Fanconi Anemia Pathway to Glycosphingolipid Metabolism in Head and Neck Cancer Cells. Clinical Cancer Research, 2018, 24, 2700-2709. HPV16-E6 Oncoprotein Activates TGF- <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>7.0</td><td>21</td></mml:math>	7.0	21
44	id="M1"> <mml:mrow><mml:mi>l²</mml:mi></mml:mrow> and Wnt/ <mml:math id="M2" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>l²</mml:mi></mml:mrow></mml:math> -Catenin Pathways in the Epithelium-Mesenchymal Transition of Cataracts in a Transgenic Mouse Model. BioMed Research	1.9	2
45	Liternational, 2018, 2018, 1-17 Early synergistic interactions between the HPV16‑E7 oncoprotein and 17β-oestradiol for repressing the expression of Granzyme�B in a cervical cancer model. International Journal of Oncology, 2018, 53, 579-591.	3.3	10
46	Inhibition of TGF- \hat{l}^2 and NOTCH Signaling by Cutaneous Papillomaviruses. Frontiers in Microbiology, 2018, 9, 389.	3.5	27
47	Loss of Function of Canonical Notch Signaling Drives Head and Neck Carcinogenesis. Clinical Cancer Research, 2018, 24, 6308-6318.	7.0	43
48	Differentiation-Dependent LMP1 Expression Is Required for Efficient Lytic Epstein-Barr Virus Reactivation in Epithelial Cells. Journal of Virology, 2017, 91, .	3.4	40
49	Human papillomavirus oncogenes reprogram the cervical cancer microenvironment independently of and synergistically with estrogen. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9076-E9085.	7.1	59
50	Absence of \hat{I}^3 -Chain in Keratinocytes Alters Chemokine Secretion, Resulting in Reduced Immune Cell Recruitment. Journal of Investigative Dermatology, 2017, 137, 2120-2130.	0.7	12
51	Human Papillomavirus and the Stroma: Bidirectional Crosstalk during the Virus Life Cycle and Carcinogenesis. Viruses, 2017, 9, 219.	3.3	40
52	Rodent Papillomaviruses. Viruses, 2017, 9, 362.	3.3	30
53	Cutaneous HPV8 and MmuPV1 E6 Proteins Target the NOTCH and TGF \hat{l}^2 Tumor Suppressors to Inhibit Differentiation and Sustain Keratinocyte Proliferation. PLoS Pathogens, 2017, 13, e1006171.	4.7	83
54	Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis. PLoS ONE, 2017, 12, e0177952.	2.5	22

#	Article	IF	Citations
55	Hypoxia-inducible factor-1α plays roles in Epstein-Barr virusâ $€$ ™s natural life cycle and tumorigenesis by inducing lytic infection through direct binding to the immediate-early BZLF1 gene promoter. PLoS Pathogens, 2017, 13, e1006404.	4.7	55
56	The full transcription map of mouse papillomavirus type 1 (MmuPV1) in mouse wart tissues. PLoS Pathogens, 2017, 13, e1006715.	4.7	47
57	The HPV16 E7 Oncoprotein Disrupts Dendritic Cell Function and Induces the Systemic Expansion of CD11b+Gr1+Cells in a Transgenic Mouse Model. BioMed Research International, 2016, 2016, 1-9.	1.9	3
58	Role of Ultraviolet Radiation in Papillomavirus-Induced Disease. PLoS Pathogens, 2016, 12, e1005664.	4.7	68
59	Using Organotypic Epithelial Tissue Culture to Study the Human Papillomavirus Life Cycle. Current Protocols in Microbiology, 2016, 41, 14B.8.1-14B.8.19.	6.5	14
60	Human papillomavirus promotes Epstein-Barr virus maintenance and lytic reactivation in immortalized oral keratinocytes. Virology, 2016, 495, 52-62.	2.4	50
61	Loss of Dependence on Continued Expression of the Human Papillomavirus 16 E7 Oncogene in Cervical Cancers and Precancerous Lesions Arising in Fanconi Anemia Pathway-Deficient Mice. MBio, 2016, 7, .	4.1	16
62	The Hidden Conundrum of Phosphoinositide Signaling in Cancer. Trends in Cancer, 2016, 2, 378-390.	7.4	32
63	The HPV16 E7 oncoprotein increases the expression of Oct3/4 and stemness-related genes and augments cell self-renewal. Virology, 2016, 499, 230-242.	2.4	20
64	The expression of miR-21 and miR-143 is deregulated by the HPV16 E7 oncoprotein and $17\hat{l}^2$ -estradiol. International Journal of Oncology, 2016, 49, 549-558.	3.3	16
65	A Mouse Model of Hyperproliferative Human Epithelium Validated by Keratin Profiling Shows an Aberrant Cytoskeletal Response to Injury. EBioMedicine, 2016, 9, 314-323.	6.1	27
66	Transgenic Mouse Models of Tumor Virus Action. Annual Review of Virology, 2016, 3, 473-489.	6.7	28
67	Functional variants of human papillomavirus type 16 demonstrate host genome integration and transcriptional alterations corresponding to their unique cancer epidemiology. BMC Genomics, 2016, 17, 851.	2.8	34
68	Identifying the Target Cells and Mechanisms of Merkel Cell Polyomavirus Infection. Cell Host and Microbe, 2016, 19, 775-787.	11.0	133
69	Defects in the Fanconi Anemia Pathway in Head and Neck Cancer Cells Stimulate Tumor Cell Invasion through DNA-PK and Rac1 Signaling. Clinical Cancer Research, 2016, 22, 2062-2073.	7.0	30
70	Stress-Induced EGFR Trafficking: Mechanisms, Functions, and Therapeutic Implications. Trends in Cell Biology, 2016, 26, 352-366.	7.9	148
71	Dysregulation of Autophagy Contributes to Anal Carcinogenesis. PLoS ONE, 2016, 11, e0164273.	2.5	27
72	Xenograft assessment of predictive biomarkers for standard head and neck cancer therapies. Cancer Medicine, 2015, 4, 699-712.	2.8	18

#	Article	IF	Citations
73	The Hippo/ <scp>YAP</scp> pathway interacts with <scp>EGFR</scp> signaling and <scp>HPV</scp> oncoproteins to regulate cervical cancer progression. EMBO Molecular Medicine, 2015, 7, 1426-1449.	6.9	221
74	The $\langle scp \rangle HPV \langle scp \rangle 16$ E6 oncoprotein and $\langle scp \rangle UVB \langle scp \rangle$ irradiation inhibit the tumor suppressor $\langle scp \rangle TGF \langle scp \rangle \hat{l}^2$ pathway in the epidermis of the $\langle scp \rangle K \langle scp \rangle 14E6$ transgenic mouse. Experimental Dermatology, 2015, 24, 430-435.	2.9	3
75	5-hydroxymethylation of the EBV genome regulates the latent to lytic switch. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E7257-65.	7.1	28
76	DEK over-expression promotes mitotic defects and micronucleus formation. Cell Cycle, 2015, 14, 3939-3953.	2.6	22
77	Tumorigenic Activity of Merkel Cell Polyomavirus T Antigens Expressed in the Stratified Epithelium of Mice. Cancer Research, 2015, 75, 1068-1079.	0.9	65
78	Human papillomavirus type 16 E7 oncoprotein upregulates the retinoic acid receptor-beta expression in cervical cancer cell lines and K14E7 transgenic mice. Molecular and Cellular Biochemistry, 2015, 408, 261-272.	3.1	9
79	APOBEC3A Functions as a Restriction Factor of Human Papillomavirus. Journal of Virology, 2015, 89, 688-702.	3.4	160
80	Differentiation-Dependent KLF4 Expression Promotes Lytic Epstein-Barr Virus Infection in Epithelial Cells. PLoS Pathogens, 2015, 11, e1005195.	4.7	79
81	Tumourigenesis Driven by the Human Papillomavirus Type 16 Asian-American E6 Variant in a Three-Dimensional Keratinocyte Model. PLoS ONE, 2014, 9, e101540.	2.5	26
82	Human Papillomavirus E6 Triggers Upregulation of the Antiviral and Cancer Genomic DNA Deaminase APOBEC3B. MBio, 2014, 5 , .	4.1	172
83	Human papillomavirus type 16 E7 oncoprotein causes a delay in repair of DNA damage. Radiotherapy and Oncology, 2014, 113, 337-344.	0.6	84
84	Recurrence of Cervical Cancer in Mice after Selective Estrogen Receptor Modulator Therapy. American Journal of Pathology, 2014, 184, 530-540.	3.8	33
85	Epigenetics of human papillomaviruses. Virology, 2013, 445, 205-212.	2.4	95
86	Requirement for Stromal Estrogen Receptor Alpha in Cervical Neoplasia. Hormones and Cancer, 2013, 4, 50-59.	4.9	57
87	Pocket Proteins Suppress Head and Neck Cancer. Cancer Research, 2012, 72, 1280-1289.	0.9	24
88	Novel antivirals inhibit early steps in HPV infection. Antiviral Research, 2012, 93, 280-287.	4.1	6
89	Enhanced apoptosis and altered DNA repair underlie improved outcomes in HPVâ€positive head and neck cancer. FASEB Journal, 2012, 26, 537.2.	0.5	0
90	Human papillomavirus type 16 E6 and E7 oncoproteins act synergistically to cause head and neck cancer in mice. Virology, 2010, 407, 60-67.	2.4	60

#	Article	IF	Citations
91	Inhibition of gamma secretase blocks HPV infection. Virology, 2010, 407, 391-396.	2.4	34
92	Rapamycin Inhibits Anal Carcinogenesis in Two Preclinical Animal Models. Cancer Prevention Research, 2010, 3, 1542-1551.	1.5	44
93	A Mouse Model for Human Anal Cancer. Cancer Prevention Research, 2010, 3, 1534-1541.	1.5	56
94	Establishment of Human Papillomavirus Infection Requires Cell Cycle Progression. PLoS Pathogens, 2009, 5, e1000318.	4.7	271
95	Persistence of High-Grade Cervical Dysplasia and Cervical Cancer Requires the Continuous Expression of the Human Papillomavirus Type 16 <i>E7</i> Oncogene. Cancer Research, 2009, 69, 4407-4414.	0.9	81
96	Effects of cellular differentiation, chromosomal integration and 5-aza-2′-deoxycytidine treatment on human papillomavirus-16 DNA methylation in cultured cell lines. Virology, 2008, 374, 292-303.	2.4	50
97	The Human Papillomavirus Type 16 E7 Oncoprotein Activates the Fanconi Anemia (FA) Pathway and Causes Accelerated Chromosomal Instability in FA Cells. Journal of Virology, 2007, 81, 13265-13270.	3.4	89
98	ALTERATIONS OF TRANSFORMING GROWTH FACTORâ€b PATHWAY IN CERVICAL CANCER. FASEB Journal, 2007, 21, A31.	0.5	0
99	Identification of biomarkers that distinguish human papillomavirus (HPV)-positive versus HPV-negative head and neck cancers in a mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14152-14157.	7.1	129
100	Estrogen contributes to the onset, persistence, and malignant progression of cervical cancer in a human papillomavirus-transgenic mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2490-2495.	7.1	202
101	Production of infectious human papillomavirus independently of viral replication and epithelial cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9311-9316.	7.1	109
102	Using an Immortalized Cell Line to Study the HPV Life Cycle in Organotypic. , 2005, 119, 141-156.		52
103	The PDZ Ligand Domain of the Human Papillomavirus Type 16 E6 Protein Is Required for E6's Induction of Epithelial Hyperplasia In Vivo. Journal of Virology, 2003, 77, 6957-6964.	3.4	203
104	Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis. Cancer Research, 2003, 63, 4862-71.	0.9	235
105	Comparative analysis of cervical cancer in women and in a human papillomavirus-transgenic mouse model: identification of minichromosome maintenance protein 7 as an informative biomarker for human cervical cancer. Cancer Research, 2003, 63, 8173-80.	0.9	93
106	Human Papillomavirus Types 16 E6 and E7 Contribute Differently to Carcinogenesis. Virology, 2000, 267, 141-150.	2.4	167
107	Establishment of the Human Papillomavirus Type 16 (HPV-16) Life Cycle in an Immortalized Human Foreskin Keratinocyte Cell Line. Virology, 1999, 262, 344-354.	2.4	159
108	The Human Papillomavirus Type 16 E6 Gene Alone Is Sufficient To Induce Carcinomas in Transgenic Animals. Journal of Virology, 1999, 73, 5887-5893.	3.4	218

#	Article	IF	CITATIONS
109	Human Papillomavirus Type 16 E7 Oncoprotein Expressed in Peripheral Epithelium Tolerizes E7-Directed Cytotoxic T-Lymphocyte Precursors Restricted through Human (and Mouse) Major Histocompatibility Complex Class I Alleles. Journal of Virology, 1999, 73, 6166-6170.	3.4	35
110	Mice Expressing the E7 Oncogene of HPV16 in Epithelium Show Central Tolerance, and Evidence of Peripheral Anergising Tolerance, to E7-Encoded Cytotoxic T-Lymphocyte Epitopes. Virology, 1998, 244, 352-364.	2.4	43
111	Role of Papillomavirus Oncogenes in Human Cervical Cancer: Transgenic Animal Studies. Experimental Biology and Medicine, 1994, 206, 24-34.	2.4	22