
Michael Winton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1428498/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GFDL's CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics. Journal of Climate, 2006, 19, 643-674.	3.2	1,431
2	GFDL's ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics. Journal of Climate, 2012, 25, 6646-6665.	3.2	972
3	The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3. Journal of Climate, 2011, 24, 3484-3519.	3.2	887
4	Dominance of the Southern Ocean in Anthropogenic Carbon and Heat Uptake in CMIP5 Models. Journal of Climate, 2015, 28, 862-886.	3.2	432
5	Probing the Fast and Slow Components of Global Warming by Returning Abruptly to Preindustrial Forcing. Journal of Climate, 2010, 23, 2418-2427.	3.2	383
6	A Reformulated Three-Layer Sea Ice Model. Journal of Atmospheric and Oceanic Technology, 2000, 17, 525-531.	1.3	354
7	Enhanced warming of the <scp>N</scp> orthwest <scp>A</scp> tlantic <scp>O</scp> cean under climate change. Journal of Geophysical Research: Oceans, 2016, 121, 118-132.	2.6	348
8	Formulation of an ocean model for global climate simulations. Ocean Science, 2005, 1, 45-79.	3.4	343
9	Impacts on Ocean Heat from Transient Mesoscale Eddies in a Hierarchy of Climate Models. Journal of Climate, 2015, 28, 952-977.	3.2	292
10	The GFDL CM3 Coupled Climate Model: Characteristics of the Ocean and Sea Ice Simulations. Journal of Climate, 2011, 24, 3520-3544.	3.2	288
11	The GFDL Earth System Model Version 4.1 (GFDLâ€ESM 4.1): Overall Coupled Model Description and Simulation Characteristics. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002015.	3.8	277
12	GFDL's CM2 Global Coupled Climate Models. Part II: The Baseline Ocean Simulation. Journal of Climate, 2006, 19, 675-697.	3.2	269
13	Amplified Arctic climate change: What does surface albedo feedback have to do with it?. Geophysical Research Letters, 2006, 33, .	4.0	255
14	Structure and Performance of GFDL's CM4.0 Climate Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 3691-3727.	3.8	242
15	OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geoscientific Model Development, 2016, 9, 3231-3296.	3.6	223
16	Importance of Ocean Heat Uptake Efficacy to Transient Climate Change. Journal of Climate, 2010, 23, 2333-2344.	3.2	221
17	The GFDL Clobal Ocean and Sea Ice Model OM4.0: Model Description and Simulation Features. Journal of Advances in Modeling Earth Systems, 2019, 11, 3167-3211.	3.8	195
18	Change in future climate due to Antarctic meltwater. Nature, 2018, 564, 53-58.	27.8	189

MICHAEL WINTON

#	Article	IF	CITATIONS
19	The GFDL Global Atmosphere and Land Model AM4.0/LM4.0: 2. Model Description, Sensitivity Studies, and Tuning Strategies. Journal of Advances in Modeling Earth Systems, 2018, 10, 735-769.	3.8	185
20	Thermohaline Oscillations Induced by Strong Steady Salinity Forcing of Ocean General Circulation Models. Journal of Physical Oceanography, 1993, 23, 1389-1410.	1.7	160
21	The GFDL Clobal Atmosphere and Land Model AM4.0/LM4.0: 1. Simulation Characteristics With Prescribed SSTs. Journal of Advances in Modeling Earth Systems, 2018, 10, 691-734.	3.8	155
22	Connecting Changing Ocean Circulation with Changing Climate. Journal of Climate, 2013, 26, 2268-2278.	3.2	152
23	Comparison of results from several AOGCMs for global and regional sea-level change 1900-2100. Climate Dynamics, 2001, 18, 225-240.	3.8	139
24	The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) contribution to CMIP6: investigation of sea-level and ocean climate change in response to CO ₂ forcing. Geoscientific Model Development, 2016, 9, 3993-4017.	3.6	133
25	Simulation of Density-Driven Frictional Downslope Flow inZ-Coordinate Ocean Models. Journal of Physical Oceanography, 1998, 28, 2163-2174.	1.7	127
26	Continued global warming after CO2 emissions stoppage. Nature Climate Change, 2014, 4, 40-44.	18.8	115
27	GFDL's CM2 Global Coupled Climate Models. Part IV: Idealized Climate Response. Journal of Climate, 2006, 19, 723-740.	3.2	110
28	An assessment of global and regional sea level for years 1993–2007 in a suite of interannual CORE-II simulations. Ocean Modelling, 2014, 78, 35-89.	2.4	106
29	Surface Albedo Feedback Estimates for the AR4 Climate Models. Journal of Climate, 2006, 19, 359-365.	3.2	104
30	Skillful regional prediction of Arctic sea ice on seasonal timescales. Geophysical Research Letters, 2017, 44, 4953-4964.	4.0	102
31	Do Climate Models Underestimate the Sensitivity of Northern Hemisphere Sea Ice Cover?. Journal of Climate, 2011, 24, 3924-3934.	3.2	97
32	Has coarse ocean resolution biased simulations of transient climate sensitivity?. Geophysical Research Letters, 2014, 41, 8522-8529.	4.0	88
33	Does the Arctic sea ice have a tipping point?. Geophysical Research Letters, 2006, 33, .	4.0	83
34	Importance of initial conditions in seasonal predictions of Arctic sea ice extent. Geophysical Research Letters, 2014, 41, 5208-5215.	4.0	83
35	On the Climatic Impact of Ocean Circulation. Journal of Climate, 2003, 16, 2875-2889.	3.2	80
36	Northern High-Latitude Heat Budget Decomposition and Transient Warming. Journal of Climate, 2013, 26, 609-621.	3.2	66

MICHAEL WINTON

#	Article	IF	CITATIONS
37	The Role of Horizontal Boundaries in Parameter Sensitivity and Decadal-Scale Variability of Coarse-Resolution Ocean General Circulation Models. Journal of Physical Oceanography, 1996, 26, 289-304.	1.7	63
38	Preconditioning of the Weddell Sea Polynya by the Ocean Mesoscale and Dense Water Overflows. Journal of Climate, 2017, 30, 7719-7737.	3.2	62
39	Mechanisms of Southern Ocean Heat Uptake and Transport in a Global Eddying Climate Model. Journal of Climate, 2016, 29, 2059-2075.	3.2	56
40	The Effect of Cold Climate upon North Atlantic Deep Water Formation in a Simple Ocean–Atmosphere Model. Journal of Climate, 1997, 10, 37-51.	3.2	55
41	Regional Arctic sea–ice prediction: potential versus operational seasonal forecast skill. Climate Dynamics, 2019, 52, 2721-2743.	3.8	42
42	Importance of wind and meltwater for observed chemical and physical changes in the Southern Ocean. Nature Geoscience, 2020, 13, 35-42.	12.9	42
43	The Damping Effect of Bottom Topography on Internal Decadal-Scale Oscillations of the Thermohaline Circulation. Journal of Physical Oceanography, 1997, 27, 203-208.	1.7	37
44	Transient Climate Sensitivity Depends on Base Climate Ocean Circulation. Journal of Climate, 2017, 30, 1493-1504.	3.2	36
45	Sea Ice-Albedo Feedback and Nonlinear Arctic Climate Change. Geophysical Monograph Series, 0, , 111-131.	0.1	32
46	Influence of Ocean and Atmosphere Components on Simulated Climate Sensitivities. Journal of Climate, 2013, 26, 231-245.	3.2	30
47	CO ₂ â€Induced Ocean Warming of the Antarctic Continental Shelf in an Eddying Global Climate Model. Journal of Geophysical Research: Oceans, 2017, 122, 8079-8101.	2.6	29
48	A Spring Barrier for Regional Predictions of Summer Arctic Sea Ice. Geophysical Research Letters, 2019, 46, 5937-5947.	4.0	29
49	A Mechanism for the Arctic Sea Ice Spring Predictability Barrier. Geophysical Research Letters, 2020, 47, e2020GL088335.	4.0	29
50	Agreement of CMIP5 Simulated and Observed Ocean Anthropogenic CO ₂ Uptake. Geophysical Research Letters, 2017, 44, 12,298.	4.0	27
51	Simple Global Ocean Biogeochemistry With Light, Iron, Nutrients and Gas Version 2 (BLINGv2): Model Description and Simulation Characteristics in GFDL's CM4.0. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002008.	3.8	24
52	Simple Optical Models for Diagnosing Surface–Atmosphere Shortwave Interactions. Journal of Climate, 2005, 18, 3796-3805.	3.2	21
53	Summer Enhancement of Arctic Sea Ice Volume Anomalies in the September-Ice Zone. Journal of Climate, 2017, 30, 2341-2362.	3.2	18
54	Climate Sensitivity of GFDL's CM4.0. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001838.	3.8	17

MICHAEL WINTON

#	Article	IF	CITATIONS
55	Why Is the Deep Sinking Narrow?. Journal of Physical Oceanography, 1995, 25, 997-1005.	1.7	16
56	Comparison of Equilibrium Climate Sensitivity Estimates From Slab Ocean, 150‥ear, and Longer Simulations. Geophysical Research Letters, 2020, 47, e2020GL088852.	4.0	16
57	Response of Storm-Related Extreme Sea Level along the U.S. Atlantic Coast to Combined Weather and Climate Forcing. Journal of Climate, 2020, 33, 3745-3769.	3.2	16
58	The Value of Sustained Ocean Observations for Sea Ice Predictions in the Barents Sea. Journal of Climate, 2019, 32, 7017-7035.	3.2	14
59	Importance of the Antarctic Slope Current in the Southern Ocean Response to Ice Sheet Melt and Wind Stress Change. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	14
60	Formation of sea ice bridges in narrow straits in response to wind and water stresses. Journal of Geophysical Research: Oceans, 2017, 122, 5588-5610.	2.6	13
61	On the Role of the Antarctic Slope Front on the Occurrence of the Weddell Sea Polynya under Climate Change. Journal of Climate, 2021, 34, 2529-2548.	3.2	13
62	Energetics of Deep-Decoupling Oscillations. Journal of Physical Oceanography, 1995, 25, 420-427.	1.7	12
63	Revisiting the Impact of Sea Salt on Climate Sensitivity. Geophysical Research Letters, 2020, 47, e2019GL085601.	4.0	12
64	Assimilation of Satellite-Retrieved Sea Ice Concentration and Prospects for September Predictions of Arctic Sea Ice. Journal of Climate, 2021, 34, 2107-2126.	3.2	11
65	Impact of Ocean Eddy Resolution on the Sensitivity of Precipitation to CO 2 Increase. Geophysical Research Letters, 2018, 45, 7194-7203.	4.0	8
66	Impact of Enthalpy-Based Ensemble Filtering Sea Ice Data Assimilation on Decadal Predictions: Simulation with a Conceptual Pycnocline Prediction Model. Journal of Climate, 2013, 26, 2368-2378.	3.2	6
67	Mechanisms of Regional Arctic Sea Ice Predictability in Two Dynamical Seasonal Forecast Systems. Journal of Climate, 2022, 35, 4207-4231.	3.2	6
68	Wind-Driven Formation of Ice Bridges in Straits. Physical Review Letters, 2017, 118, 128701.	7.8	3
69	Polar Water Column Stability. Journal of Physical Oceanography, 1999, 29, 1368-1371.	1.7	2
70	Prospects for Seasonal Prediction of Summertime Trans-Arctic Sea Ice Path. Journal of Climate, 2022, 35, 4253-4263.	3.2	0