
Gal Richter-Levin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1427751/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intraâ€amygdala metaplasticity modulation of fear extinction learning. European Journal of Neuroscience, 2022, 55, 2455-2463.	2.6	6
2	Inhibitory Metaplasticity in Juvenile Stressed Rats Restores Associative Memory in Adulthood by Regulating Epigenetic Complex G9a/GLP. International Journal of Neuropsychopharmacology, 2022, 25, 576-589.	2.1	2
3	Hippocampal GABAergic interneurons and their co-localized neuropeptides in stress vulnerability and resilience. Neuroscience and Biobehavioral Reviews, 2021, 122, 229-244.	6.1	16
4	Behavioral profiling reveals an enhancement of dentate gyrus paired pulse inhibition in a rat model of PTSD. Molecular and Cellular Neurosciences, 2021, 111, 103601.	2.2	8
5	Developing of Focal Ischemia in the Hippocampus or the Amygdala Reveals a Regional Compensation Rule for Fear Memory Acquisition. ENeuro, 2021, 8, ENEURO.0398-20.2021.	1.9	0
6	Pten is a key intrinsic factor regulating raphe 5-HT neuronal plasticity and depressive behaviors in mice. Translational Psychiatry, 2021, 11, 186.	4.8	8
7	Title: "Labels Matter: Is it stress or is it Trauma?â€: Translational Psychiatry, 2021, 11, 385.	4.8	35
8	Machine Learning-Based Behavioral Diagnostic Tools for Depression: Advances, Challenges, and Future Directions. Journal of Personalized Medicine, 2021, 11, 957.	2.5	17
9	Return of fear following extinction in youth: An eventâ€related potential study. Developmental Psychobiology, 2021, 63, e22189.	1.6	5
10	Machine learning-based diagnosis support system for differentiating between clinical anxiety and depression disorders. Journal of Psychiatric Research, 2021, 141, 199-205.	3.1	19
11	αCaMKII in the lateral amygdala mediates PTSD-Like behaviors and NMDAR-Dependent LTD. Neurobiology of Stress, 2021, 15, 100359.	4.0	9
12	Reducing glutamic acid decarboxylase in the dorsal dentate gyrus attenuates juvenile stress induced emotional and cognitive deficits. Neurobiology of Stress, 2021, 15, 100350.	4.0	12
13	Cognitive flexibility in PTSD individuals following nature adventure intervention: is it really that good?. Stress, 2020, 23, 97-104.	1.8	8
14	Active resilience in response to traumatic stress. , 2020, , 95-106.		1
15	Network Neuromodulation of Opioid and GABAergic Receptors Following a Combination of "Juvenile― and "Adult Stress―in Rats. International Journal of Molecular Sciences, 2020, 21, 5422.	4.1	4
16	Using machine learning-based analysis for behavioral differentiation between anxiety and depression. Scientific Reports, 2020, 10, 16381.	3.3	50
17	A Translational Paradigm to Study the Effects of Uncontrollable Stress in Humans. International Journal of Molecular Sciences, 2020, 21, 6010.	4.1	3
18	GABAergic Transmission in the Basolateral Amygdala Differentially Modulates Plasticity in the Dentate Gyrus and the CA1 Areas. International Journal of Molecular Sciences, 2020, 21, 3786.	4.1	6

#	Article	IF	CITATIONS
19	Region-specific involvement of interneuron subpopulations in trauma-related pathology and resilience. Neurobiology of Disease, 2020, 143, 104974.	4.4	15
20	A neural circuit for comorbid depressive symptoms in chronic pain. Nature Neuroscience, 2019, 22, 1649-1658.	14.8	175
21	The role of the GABAA receptor Alpha 1 subunit in the ventral hippocampus in stress resilience. Scientific Reports, 2019, 9, 13513.	3.3	15
22	P.2.06 Differential role of GABAergic alterations in the dorsal and ventral dentate gyrus, and its impact on childhood stress. European Neuropsychopharmacology, 2019, 29, S658-S659.	0.7	0
23	P.2.20 Neuropeptide Y in the dorsal dentate gyrus is an important protective factor that mediate trauma resilience. European Neuropsychopharmacology, 2019, 29, S669-S670.	0.7	Ο
24	Animal models of PTSD: a challenge to be met. Molecular Psychiatry, 2019, 24, 1135-1156.	7.9	138
25	Neurofascin Knock Down in the Basolateral Amygdala Mediates Resilience of Memory and Plasticity in the Dorsal Dentate Gyrus Under Stress. Molecular Neurobiology, 2018, 55, 7317-7326.	4.0	8
26	Perturbation of GABAergic Synapses at the Axon Initial Segment of Basolateral Amygdala Induces Trans-regional Metaplasticity at the Medial Prefrontal Cortex. Cerebral Cortex, 2018, 28, 395-410.	2.9	10
27	How could stress lead to major depressive disorder?. IBRO Reports, 2018, 4, 38-43.	0.3	66
28	Juvenile stress leads to long-term immunological metaplasticity-like effects on inflammatory responses in adulthood. Neurobiology of Learning and Memory, 2018, 154, 12-21.	1.9	10
29	From Synaptic Metaplasticity to Behavioral Metaplasticity. Neurobiology of Learning and Memory, 2018, 154, 1-4.	1.9	17
30	F75. Selective Attention Processes in ADHD: Evidence From a Modified Stroop- Flanker Task. Biological Psychiatry, 2018, 83, S266-S267.	1.3	1
31	Exposure to prolonged controllable or uncontrollable stress affects GABAergic function in sub-regions of the hippocampus and the amygdala. Neurobiology of Learning and Memory, 2017, 138, 271-280.	1.9	14
32	Pre-trauma Methylphenidate in rats reduces PTSD-like reactions one month later. Translational Psychiatry, 2017, 7, e1000-e1000.	4.8	17
33	Neurobiological consequences of juvenile stress: A GABAergic perspective on risk and resilience. Neuroscience and Biobehavioral Reviews, 2017, 74, 21-43.	6.1	46
34	Juvenile adversity and adult threat controllability in translational models of stress-related disorders. Current Opinion in Behavioral Sciences, 2017, 14, 148-154.	3.9	4
35	Down-regulation of dorsal striatal αCaMKII causes striatum-related cognitive and synaptic disorders. Experimental Neurology, 2017, 298, 112-121.	4.1	10
36	Periaqueductal Grey differential modulation of Nucleus Accumbens and Basolateral Amygdala plasticity under controllable and uncontrollable stress. Scientific Reports, 2017, 7, 487.	3.3	9

#	Article	IF	CITATIONS
37	Fluoxetine treatment is effective in a rat model of childhood-induced post-traumatic stress disorder. Translational Psychiatry, 2017, 7, 1260.	4.8	14
38	GABAergic Synapses at the Axon Initial Segment of Basolateral Amygdala Projection Neurons Modulate Fear Extinction. Neuropsychopharmacology, 2017, 42, 473-484.	5.4	33
39	The interhemispheric CA1 circuit governs rapid generalisation but not fear memory. Nature Communications, 2017, 8, 2190.	12.8	25
40	PTSD modeling in rodents shows alternating patterns of limbic activity in various types of reactions to stress. Molecular Psychiatry, 2016, 21, 587-587.	7.9	4
41	The role of empathy in the neural responses to observed human social touch. Cognitive, Affective and Behavioral Neuroscience, 2016, 16, 802-813.	2.0	39
42	Shifts in excitatory/inhibitory balance by juvenile stress: A role for neuron–astrocyte interaction in the dentate gyrus. Glia, 2016, 64, 911-922.	4.9	30
43	Receptor tyrosine kinase EphA7 is required for interneuron connectivity at specific subcellular compartments of granule cells. Scientific Reports, 2016, 6, 29710.	3.3	16
44	Dentate Gyrus Local Circuit is Implicated in Learning Under Stress—a Role for Neurofascin. Molecular Neurobiology, 2016, 53, 842-850.	4.0	14
45	The hidden price and possible benefit of repeated traumatic exposure. Stress, 2016, 19, 1-7.	1.8	45
46	Behavioral profiling as a translational approach in an animal model of posttraumatic stress disorder. Neurobiology of Disease, 2016, 88, 139-147.	4.4	69
47	A novel approach to PTSD modeling in rats reveals alternating patterns of limbic activity in different types of stress reaction. Molecular Psychiatry, 2016, 21, 630-641.	7.9	70
48	Emotion Regulatory Flexibility Sheds Light on the Elusive Relationship Between Repeated Traumatic Exposure and Posttraumatic Stress Disorder Symptoms. Clinical Psychological Science, 2016, 4, 28-39.	4.0	94
49	Despair-associated memory requires a slow-onset CA1 long-term potentiation with unique underlying mechanisms. Scientific Reports, 2015, 5, 15000.	3.3	12
50	Reduced hippocampal volume is associated with overgeneralization of negative context in individuals with PTSD Neuropsychology, 2015, 29, 151-161.	1.3	72
51	Light exposure before learning improves memory consolidation at night. Scientific Reports, 2015, 5, 15578.	3.3	23
52	Dorsal periaqueductal gray simultaneously modulates ventral subiculum induced-plasticity in the basolateral amygdala and the nucleus accumbens. Frontiers in Behavioral Neuroscience, 2015, 9, 53.	2.0	8
53	Long-term changes in the CA3 associative network of fear-conditioned mice. Stress, 2015, 18, 188-197.	1.8	5
54	Magnesium sulfate prevents maternal inflammation–induced impairment of learning ability and memory in rat offspring. American Journal of Obstetrics and Gynecology, 2015, 213, 851.e1-851.e8.	1.3	30

#	Article	IF	CITATIONS
55	5-HT receptor-mediated modulation of granule cell inhibition after juvenile stress recovers after a second exposure to adult stress. Neuroscience, 2015, 293, 67-79.	2.3	16
56	Interpersonal distance and social anxiety in autistic spectrum disorders: A behavioral and ERP study. Social Neuroscience, 2015, 10, 1-12.	1.3	45
57	Differential modulation of synaptic plasticity and local circuit activity in the dentate gyrus and CA1 regions of the rat hippocampus by corticosterone. Stress, 2015, 18, 319-327.	1.8	25
58	Good stress, bad stress and very bad stress. Stress, 2015, 18, 267-268.	1.8	4
59	Adaptive emotional memory: the key hippocampal–amygdalar interaction. Stress, 2015, 18, 297-308.	1.8	49
60	Juvenile stress alters LTP in ventral hippocampal slices: Involvement of noradrenergic mechanisms. Behavioural Brain Research, 2015, 278, 559-562.	2.2	42
61	Differential Effects of Controllable Stress Exposure on Subsequent Extinction Learning in Adult Rats. Frontiers in Behavioral Neuroscience, 2015, 9, 366.	2.0	3
62	Emotional Tagging and Long-Term Memory Formation. , 2015, , 215-229.		2
63	Water associated zero maze: a novel rat test for long term traumatic re-experiencing. Frontiers in Behavioral Neuroscience, 2014, 8, 1.	2.0	348
64	Amygdala activation and GABAergic gene expression in hippocampal sub-regions at the interplay of stress and spatial learning. Frontiers in Behavioral Neuroscience, 2014, 8, 3.	2.0	38
65	Differential activation of amygdala, dorsal and ventral hippocampus following an exposure to a reminder of underwater trauma. Frontiers in Behavioral Neuroscience, 2014, 8, 18.	2.0	34
66	GAD65 haplodeficiency conveys resilience in animal models of stress-induced psychopathology. Frontiers in Behavioral Neuroscience, 2014, 8, 265.	2.0	34
67	The hidden price of repeated traumatic exposure: different cognitive deficits in different first-responders. Frontiers in Behavioral Neuroscience, 2014, 8, 281.	2.0	26
68	The effects of a reminder of underwater trauma on behaviour and memory-related mechanisms in the rat dentate gyrus. International Journal of Neuropsychopharmacology, 2014, 17, 571-580.	2.1	39
69	The hidden price of repeated traumatic exposure. Stress, 2014, 17, 343-351.	1.8	32
70	A rat model of pre-puberty (Juvenile) stress-induced predisposition to stress-related disorders: Sex similarities and sex differences in effects and symptoms. World Journal of Biological Psychiatry, 2014, 15, 36-48.	2.6	51
71	The GABA-synthetic enzyme GAD65 controls circadian activation of conditioned fear pathways. Behavioural Brain Research, 2014, 260, 92-100.	2.2	17
72	Stress modulation of hippocampal activity – Spotlight on the dentate gyrus. Neurobiology of Learning and Memory, 2014, 112, 53-60.	1.9	51

#	Article	IF	CITATIONS
73	Long-term effects of controllability or the lack of it on coping abilities and stress resilience in the rat. Stress, 2014, 17, 423-430.	1.8	33
74	Underwater trauma causes a long-term specific increase in the expression of cyclooxygenase-2 in the ventral CA1 of the hippocampus. Psychoneuroendocrinology, 2014, 49, 62-68.	2.7	10
75	Cannabinoid Receptor Activation Prevents the Effects of Chronic Mild Stress on Emotional Learning and LTP in a Rat Model of Depression. Neuropsychopharmacology, 2014, 39, 919-933.	5.4	71
76	Stress-induced metaplasticity: From synapses to behavior. Neuroscience, 2013, 250, 112-120.	2.3	100
77	Selective increase in the association of the β2 adrenergic receptor, β Arrestin-1 and p53 with Mdm2 in the ventral hippocampus one month after underwater trauma. Behavioural Brain Research, 2013, 240, 26-28.	2.2	19
78	β-endorphin degradation and the individual reactivity to traumatic stress. European Neuropsychopharmacology, 2013, 23, 1779-1788.	0.7	11
79	Age and sex-dependent differences in activity, plasticity and response to stress in the dentate gyrus. Neuroscience, 2013, 249, 21-30.	2.3	40
80	Priming stimulation of basal but not lateral amygdala affects long-term potentiation in the rat dentate gyrus in vivo. Neuroscience, 2013, 246, 13-21.	2.3	14
81	Hypothalamic Corticotropin-Releasing Factor is Centrally Involved in Learning Under Moderate Stress. Neuropsychopharmacology, 2013, 38, 1825-1832.	5.4	5
82	Dorsal periaqueductal gray-amygdala pathway conveys both innate and learned fear responses in rats. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14795-14800.	7.1	144
83	Different patterns of amygdala priming differentially affect dentate gyrus plasticity and corticosterone, but not CA1 plasticity. Frontiers in Neural Circuits, 2013, 7, 80.	2.8	20
84	Short- and long-term effects of juvenile stressor exposure on the expression of GABA _A receptor subunits in rats. Stress, 2012, 15, 416-424.	1.8	47
85	Unpredictable chronic stress in juvenile or adult rats has opposite effects, respectively, promoting and impairing resilience. Stress, 2012, 15, 11-20.	1.8	46
86	Post-Weaning to Pre-Pubertal (â€Juvenile') Stress: A Model of Induced Predisposition to Stress-Related Disorders. Neuroendocrinology, 2012, 95, 56-64.	2.5	71
87	Stimulus intensity-dependent modulations of hippocampal long-term potentiation by basolateral amygdala priming. Frontiers in Cellular Neuroscience, 2012, 6, 21.	3.7	26
88	Emotional tagging—A simple hypothesis in a complex reality. Progress in Neurobiology, 2011, 94, 64-76.	5.7	97
89	Stress revisited: A critical evaluation of the stress concept. Neuroscience and Biobehavioral Reviews, 2011, 35, 1291-1301.	6.1	1,124
90	Stressâ€induced dynamic routing of hippocampal connectivity: A hypothesis. Hippocampus, 2010, 20, 1332-1338.	1.9	130

#	Article	IF	CITATIONS
91	"Juvenile stress―alters maturationâ€related changes in expression of the neural cell adhesion molecule L1 in the limbic system: Relevance for stressâ€related psychopathologies. Journal of Neuroscience Research, 2010, 88, 369-380.	2.9	31
92	Juvenile stress as an animal model of childhood trauma. , 2010, , 95-102.		3
93	Emotional Memory Formation Under Lower Versus Higher Stress Conditions. Frontiers in Behavioral Neuroscience, 2010, 4, 183.	2.0	12
94	Stress and Amygdala Suppression of Metaplasticity in the Medial Prefrontal Cortex. Cerebral Cortex, 2010, 20, 2433-2441.	2.9	74
95	Differential impact of juvenile stress and corticosterone in juvenility and in adulthood, in male and female rats. Behavioural Brain Research, 2010, 214, 268-276.	2.2	83
96	Exposure to extreme stress impairs contextual odour discrimination in an animal model of PTSD. International Journal of Neuropsychopharmacology, 2009, 12, 291.	2.1	40
97	Pre-pubertal stress exposure affects adult behavioral response in association with changes in circulating corticosterone and brain-derived neurotrophic factor. Psychoneuroendocrinology, 2009, 34, 844-858.	2.7	81
98	ERK2 and CREB activation in the amygdala when an event is remembered as "Fearful―and not when it is remembered as "Instructive― Journal of Neuroscience Research, 2009, 87, 1823-1831.	2.9	20
99	From high anxiety trait to depression: a neurocognitive hypothesis. Trends in Neurosciences, 2009, 32, 312-320.	8.6	186
100	Physical stress differs from psychosocial stress in the pattern and time-course of behavioral responses, serum corticosterone and expression of plasticity-related genes in the rat. Stress, 2009, 12, 412-425.	1.8	52
101	Enriched Environment Experience Overcomes Learning Deficits and Depressive-Like Behavior Induced by Juvenile Stress. PLoS ONE, 2009, 4, e4329.	2.5	91
102	Toward Animal Models of Post-Traumatic Stress Disorder. , 2009, , 133-149.		1
103	Ageâ€dependent effects of chronic stress on brain plasticity and depressive behavior. Journal of Neurochemistry, 2008, 107, 522-532.	3.9	178
104	Activation pattern of the limbic system following spatial learning under stress. European Journal of Neuroscience, 2008, 27, 715-722.	2.6	29
105	Neonatal and juvenile stress induces changes in adult social behavior without affecting cognitive function. Behavioural Brain Research, 2008, 190, 135-139.	2.2	47
106	Exposure to Forced Swim Stress Alters Local Circuit Activity and Plasticity in the Dentate Gyrus of the Hippocampus. Neural Plasticity, 2008, 2008, 1-8.	2.2	22
107	Juvenile stress-induced alteration of maturation of the GABAA receptor α subunit in the rat. International Journal of Neuropsychopharmacology, 2008, 11, 891-903.	2.1	56
108	Exposure to Stressors during Juvenility Disrupts Development-Related Alterations in the PSA-NCAM to NCAM Expression Ratio: Potential Relevance for Mood and Anxiety Disorders. Neuropsychopharmacology, 2008, 33, 378-393.	5.4	78

#	Article	IF	CITATIONS
109	Glucocorticoid receptors and β-adrenoceptors in basolateral amygdala modulate synaptic plasticity in hippocampal dentate gyrus, but not in area CA1. Neuropharmacology, 2007, 52, 244-252.	4.1	61
110	Juvenile stress induces a predisposition to either anxiety or depressive-like symptoms following stress in adulthood. European Neuropsychopharmacology, 2007, 17, 245-256.	0.7	142
111	Long-lasting behavioral effects of juvenile trauma in an animal model of PTSD associated with a failure of the autonomic nervous system to recover. European Neuropsychopharmacology, 2007, 17, 464-477.	0.7	69
112	Amygdala modulation of memory-related processes in the hippocampus: potential relevance to PTSD. Progress in Brain Research, 2007, 167, 35-51.	1.4	67
113	How can drug discovery for psychiatric disorders be improved?. Nature Reviews Drug Discovery, 2007, 6, 189-201.	46.4	217
114	Contrasting Roles of Corticosteroid Receptors in Hippocampal Plasticity. Journal of Neuroscience, 2006, 26, 9130-9134.	3.6	94
115	Effects of early-life stress on behavior and neurosteroid levels in the rat hypothalamus and entorhinal cortex. Brain Research Bulletin, 2006, 68, 419-424.	3.0	79
116	The Contribution of an Animal Model Toward Uncovering Biological Risk Factors for PTSD. Annals of the New York Academy of Sciences, 2006, 1071, 335-350.	3.8	94
117	The international society for developmental psychobiology annual meeting symposium: Impact of early life experiences on brain and behavioral development. Developmental Psychobiology, 2006, 48, 583-602.	1.6	87
118	Activity and plasticity in the CA1, the dentate gyrus, and the amygdala following controllable vs. uncontrollable water stress. Hippocampus, 2006, 16, 35-42.	1.9	127
119	Effects of stress and corticosterone on activity and plasticity in the amygdala. Journal of Neuroscience Research, 2006, 84, 1580-1587.	2.9	95
120	Learning under stress in the adult rat is differentially affected by â€~juvenile' or â€~adolescent' stress. International Journal of Neuropsychopharmacology, 2006, 9, 713.	2.1	106
121	Factors That Determine the Non-Linear Amygdala Influence on Hippocampus-Dependent Memory. Dose-Response, 2006, 4, dose-response.0.	1.6	19
122	A Cellular Correlate of Learning-induced Metaplasticity in the Hippocampus. Cerebral Cortex, 2006, 16, 460-468.	2.9	112
123	Neuromodulators of LTP and NCAMs in the amygdala and hippocampus in response to stress. , 2006, 98, 137-148.		7
124	Involvement of the amygdala in the neuroendocrine and behavioral consequences of stress. Handbook of Behavioral Neuroscience, 2005, 15, 793-805.	0.0	1
125	Physiological Dissociation in Hippocampal Subregions in Response to Amygdala Stimulation. Cerebral Cortex, 2005, 15, 1815-1821.	2.9	73
126	Exposure to juvenile stress exacerbates the behavioural consequences of exposure to stress in the adult rat. International Journal of Neuropsychopharmacology, 2005, 8, 163-173.	2.1	187

#	Article	IF	CITATIONS
127	Setting Apart the Affected: The Use of Behavioral Criteria in Animal Models of Post Traumatic Stress Disorder. Neuropsychopharmacology, 2004, 29, 1962-1970.	5.4	237
128	A Facilitative Role for Corticosterone in the Acquisition of a Spatial Task Under Moderate Stress. Learning and Memory, 2004, 11, 188-195.	1.3	149
129	The Amygdala, the Hippocampus, and Emotional Modulation of Memory. Neuroscientist, 2004, 10, 31-39.	3.5	143
130	Differential Amplification of Intron-containing Transcripts Reveals Long Term Potentiation-associated Up-regulation of Specific Pde10A Phosphodiesterase Splice Variants. Journal of Biological Chemistry, 2004, 279, 15841-15849.	3.4	43
131	Effects of inescapable stress on LTP in the amygdala versus the dentate gyrus of freely behaving rats. European Journal of Neuroscience, 2004, 19, 1887-1894.	2.6	103
132	The amygdala and appraisal processes: stimulus and response complexity as an organizing factor. Brain Research Reviews, 2004, 44, 179-186.	9.0	58
133	Impaired interleukinâ€1 signaling is associated with deficits in hippocampal memory processes and neural plasticity. Hippocampus, 2003, 13, 826-834.	1.9	306
134	LTP but not seizure is associated with up-regulation ofAKAP-150. European Journal of Neuroscience, 2003, 17, 331-340.	2.6	20
135	Morphological changes in hippocampal dentate gyrus synapses following spatial learning in rats are transient. European Journal of Neuroscience, 2003, 17, 1973-1980.	2.6	93
136	Emotional tagging of memory formation—in the search for neural mechanisms. Brain Research Reviews, 2003, 43, 247-256.	9.0	175
137	Simultaneous induction of long-term potentiation in the hippocampus and the amygdala by entorhinal cortex activation: mechanistic and temporal profiles. Neuroscience, 2003, 120, 1125-1135.	2.3	75
138	Exposure to Acute Stress Blocks the Induction of Long-Term Potentiation of the Amygdala–Prefrontal Cortex PathwayIn Vivo. Journal of Neuroscience, 2003, 23, 4406-4409.	3.6	271
139	Effects of Novel versus Repeated Mild Stressful Experiences on Longâ€Term Potentiation Induced Simultaneously in the Amygdala and Hippocampus in Freely Behaving Rats. Annals of the New York Academy of Sciences, 2003, 985, 556-557.	3.8	4
140	Local circuit plasticity in the rat dentate gyrus: characterization and aging-related impairment. Neuroscience, 2002, 112, 1001-1007.	2.3	20
141	The SSRIs drug Fluoxetine, but not the noradrenergic tricyclic drug Desipramine, improves memory performance during acute major depression. Brain Research Bulletin, 2002, 58, 345-350.	3.0	95
142	Mechanisms of Amygdala Modulation of Hippocampal Plasticity. Journal of Neuroscience, 2002, 22, 9912-9921.	3.6	206
143	A gradient of plasticity in the amygdala revealed by cortical and subcortical stimulation, in vivo. Neuroscience, 2001, 106, 613-620.	2.3	33
144	Differential activation of hippocampus and amygdala following spatial learning under stress. European Journal of Neuroscience, 2001, 14, 719-725.	2.6	117

#	Article	IF	CITATIONS
145	Acute and Repeated Swim Stress Effects on Peripheral Benzodiazepine Receptors in the Rat Hippocampus, Adrenal, and Kidney,. Neuropsychopharmacology, 2001, 25, 669-678.	5.4	54
146	Is LTP in the Hippocampus a Useful Model for Learning-Related Alterations in Gene Expression?. Reviews in the Neurosciences, 2001, 12, 289-96.	2.9	4
147	LTP in the rat basal amygdala induced by perirhinal cortex stimulation in vivo. NeuroReport, 2000, 11, 525-530.	1.2	17
148	Amygdala-Hippocampus Dynamic Interaction in Relation to Memory. Molecular Neurobiology, 2000, 22, 011-020.	4.0	146
149	Re-structuring of synapses 24 hours after induction of long-term potentiation in the dentate gyrus of the rat hippocampus in vivo. Neuroscience, 2000, 100, 221-227.	2.3	24
150	Short-term behavioral and electrophysiological consequences of underwater trauma. Physiology and Behavior, 2000, 70, 327-332.	2.1	49
151	Perirhinal Cortex and Thalamic Stimulation Induces LTP in Different Areas of the Amygdala. Annals of the New York Academy of Sciences, 2000, 911, 474-476.	3.8	13
152	Biphasic Modulation of Hippocampal Plasticity by Behavioral Stress and Basolateral Amygdala Stimulation in the Rat. Journal of Neuroscience, 1999, 19, 10530-10535.	3.6	228
153	Frequency-Dependent Inhibition in the Dentate Gyrus Is Attenuated by the NMDA Receptor Blocker MK-801 at Doses That Do Not Yet Affect Long-Term Potentiation. Hippocampus, 1999, 9, 491-494.	1.9	19
154	Priming stimulation in the basolateral amygdala modulates synaptic plasticity in the rat dentate gyrus. Neuroscience Letters, 1999, 270, 83-86.	2.1	62
155	Hippocampal plasticity involves extensive gene induction and multiple cellular mechanisms. Journal of Molecular Neuroscience, 1998, 10, 75-98.	2.3	147
156	Acute and long-term behavioral correlates of underwater trauma — potential relevance to stress and post-stress syndromes. Psychiatry Research, 1998, 79, 73-83.	3.3	126
157	Dissociation between genes activated in long-term potentiation and in spatial learning in the rat. Neuroscience Letters, 1998, 251, 41-44.	2.1	26
158	Spatial training and high-frequency stimulation engage a common pathway to enhance glutamate release in the hippocampus Learning and Memory, 1998, 4, 445-450.	1.3	14
159	Ultrastructural synaptic correlates of spatial learning in rat hippocampus. Neuroscience, 1997, 80, 69-77.	2.3	93
160	Reduction in spine density associated with long-term potentiation in the dentate gyrus suggests a spine fusion-and-branching model of potentiation. , 1997, 7, 489-500.		25
161	Long-term potentiation increases tyrosine phosphorylation of the N-methyl-D-aspartate receptor subunit 2B in rat dentate gyrus in vivo Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 10457-10460.	7.1	165
162	Serotinin, Aging and Cognitive Functions of the Hippocampus. Reviews in the Neurosciences, 1996, 7, 103-13.	2.9	54

#	Article	IF	CITATIONS
163	Inhibitors of PLA2 and NO synthase cooperate in producing amnesia of a spatial task. NeuroReport, 1995, 6, 730-732.	1.2	30
164	Dendritic spines form 'collars' in hippocampal granule cells. NeuroReport, 1995, 6, 1557-1561.	1.2	12
165	Two retrograde messengers are better than one?. NeuroReport, 1995, 6, 710.	1.2	0
166	Stimulation at 1-5 Hz does not produce long-term depression or depotentiation in the hippocampus of the adult rat in vivo. Journal of Neurophysiology, 1995, 74, 1793-1799.	1.8	114
167	Long-term potentiation and glutamate release in the dentate gyrus: links to spatial learning. Behavioural Brain Research, 1995, 66, 37-40.	2.2	86
168	LTP in the dentate gyrus is associated with a persistent NMDA receptor-dependent enhancement of synaptosomal glutamate release. Brain Research, 1994, 667, 115-117.	2.2	43
169	Differential Effects of Serotonin and Raphe Grafts in the Hippocampus and Hypothalamus: A Combined Behavioural and Anatomical Study in the Rat. European Journal of Neuroscience, 1994, 6, 1720-1728.	2.6	11
170	Effect of 5-hydroxytryptophane on behavior and hippocampal physiology in young and old rats. Neurobiology of Aging, 1994, 15, 635-641.	3.1	19
171	The effects general and restricted serotonergic lesions on hippocampal electrophysiology and behavior. Brain Research, 1994, 642, 111-116.	2.2	28
172	Activation of metabotropic glutamate receptors is necessary for long-term potentiation in the dentate gyrus and for spatial learning. Neuropharmacology, 1994, 33, 853-857.	4.1	115
173	Spatial learning and the saturation of long-term potentiation. Hippocampus, 1993, 3, 123-125.	1.9	63
174	Regional Specificity of Raphe Graft-Induced Recovery of Behavioral Functions Impaired by Combined Serotonergic/Cholinergic Lesions. Experimental Neurology, 1993, 121, 256-260.	4.1	32
175	Age-related Cognitive Deficits in Rats Are Associated with a Combined Loss of Cholinergic and Serotonergic Functionsa. Annals of the New York Academy of Sciences, 1993, 695, 254-257.	3.8	41
176	Raphe Grafts in the Hippocampus, But Not in the Entorhinal Cortex, Reverse Hippocampal Hyperexcitability of Serotonin-Depleted Rats and Restore Their Responsiveness to Fenfluramine. Developmental Neuroscience, 1992, 14, 166-172.	2.0	8
177	Spontaneous recovery of deficits in spatial memory and cholinergic potentiation of NMDA in CA1 neurons during chronic lithium treatment. Hippocampus, 1992, 2, 279-286.	1.9	8
178	The Contribution of the Serotonergic Innervation of the Hippocampus to the Effects of Combined Cholinergic/Serotonergic Deficits. , 1992, , 228-239.		3
179	An α2 antagonist, idazoxan, enhances EPSP-spike coupling in the rat dentate gyrus. Brain Research, 1991, 540, 291-294.	2.2	16
180	Restoration of serotonergic innervation underlies the behavioral effects of raphe grafts. Brain Research, 1991, 566, 21-25.	2.2	8

#	Article	IF	CITATIONS
181	Actions of norepinephrine in the rat hippocampus. Progress in Brain Research, 1991, 88, 323-330.	1.4	57
182	The effects of serotonin depletion and raphe grafts on hippocampal electrophysiology and behavior. Journal of Neuroscience, 1991, 11, 1585-1596.	3.6	80
183	Grafting of midbrain neurons into the hippocampus restores serotonergic modulation of hippocampal activity in the rat. Brain Research, 1990, 521, 1-6.	2.2	15
184	Effects of serotonin releasers on dentate granule cell excitability in the rat. Experimental Brain Research, 1990, 82, 199-207.	1.5	40
185	Raphe cells grafted into the hippocampus can ameliorate spatial memory deficits in rats with combined serotonergic/cholinergic deficiencies. Brain Research, 1989, 478, 184-186.	2.2	50
186	Spatial performance is severely impaired in rats with combined reduction of serotonergic and cholinergic transmission. Brain Research, 1989, 477, 404-407.	2.2	139
187	Serotonin releasers modulate reactivity of the rat hippocampus to afferent stimulation. Neuroscience Letters, 1988, 94, 173-176.	2.1	10
188	Chapter 12 Physiology of graft-host interactions in the rat hippocampus. Progress in Brain Research, 1988, 78, 95-101.	1.4	4