
Kai-Christian Sonntag

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1427408/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Brain cells derived from Alzheimer's disease patients have multiple specific innate abnormalities in energy metabolism. Molecular Psychiatry, 2021, 26, 5702-5714.	4.1	54
2	Hypothesis and Theory: Characterizing Abnormalities of Energy Metabolism Using a Cellular Platform as a Personalized Medicine Approach for Alzheimer's Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 697578.	1.8	4
3	Reactive oxygen species-sensitive nanophotosensitizers of aminophenyl boronic acid pinacol ester conjugated chitosan- <i>g</i> -methoxy poly(ethylene glycol) copolymer for photodynamic treatment of cancer. Biomedical Materials (Bristol), 2020, 15, 055034.	1.7	7
4	The use of laser capture microdissection to identify specific pathways and mechanisms involved in impulsive choice in rats. Heliyon, 2019, 5, e02254.	1.4	3
5	Gene expression profile associated with postnatal development of pyramidal neurons in the human prefrontal cortex implicates ubiquitin ligase E3 in the pathophysiology of schizophrenia onset. Journal of Psychiatric Research, 2018, 102, 110-117.	1.5	10
6	Pluripotent stem cell-based therapy for Parkinson's disease: Current status and future prospects. Progress in Neurobiology, 2018, 168, 1-20.	2.8	84
7	Cell Type-Specific Laser Capture Microdissection for Gene Expression Profiling in the Human Brain. Methods in Molecular Biology, 2018, 1723, 203-221.	0.4	5
8	Laser microdissection and gene expression profiling in the human postmortem brain. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 150, 263-272.	1.0	3
9	Late-onset Alzheimer's disease is associated with inherent changes in bioenergetics profiles. Scientific Reports, 2017, 7, 14038.	1.6	96
10	MiR-126 Regulates Growth Factor Activities and Vulnerability to Toxic Insult in Neurons. Molecular Neurobiology, 2016, 53, 95-108.	1.9	48
11	Limited predictability of postmortem human brain tissue quality by <scp>RNA</scp> integrity numbers. Journal of Neurochemistry, 2016, 138, 53-59.	2.1	36
12	Midbrain dopamine neurons in Parkinson׳s disease exhibit a dysregulated miRNA and target-gene network. Brain Research, 2015, 1618, 111-121.	1.1	88
13	Differentiation of oligodendrocyte precursors is impaired in the prefrontal cortex in schizophrenia. Schizophrenia Research, 2015, 169, 374-380.	1.1	73
14	Fast and Efficient Neural Conversion of Human Hematopoietic Cells. Stem Cell Reports, 2014, 3, 1118-1131.	2.3	33
15	Poster #M176 MESSENGER RNA AND MICRORNA EXPRESSION PROFILING OF PYRAMIDAL NEURONS, PARVALBUMIN-IMMUNOREACTIVE NEURONS, DOPAMINE NEURONS AND OLIGODENDROCYTES IN SCHIZOPHRENIA AND PARKINSON'S DISEASE. Schizophrenia Research, 2014, 153, S254-S255.	1.1	0
16	Molecular Profiles of Pyramidal Neurons in the Superior Temporal Cortex in Schizophrenia. Journal of Neurogenetics, 2014, 28, 53-69.	0.6	75
17	miR-126 contributes to Parkinson's disease by dysregulating the insulin-like growth factor/phosphoinositide 3-kinase signaling. Neurobiology of Aging, 2014, 35, 1712-1721.	1.5	120
18	Selection Based on FOXA2 Expression Is Not Sufficient to Enrich for Dopamine Neurons From Human Plurinotent Stem Cells, Stem Cells Translational Medicine, 2014, 3, 1032-1042	1.6	13

KAI-CHRISTIAN SONNTAG

#	Article	IF	CITATIONS
19	Molecular Profiles of Parvalbumin-Immunoreactive Neurons in the Superior Temporal Cortex in Schizophrenia. Journal of Neurogenetics, 2014, 28, 70-85.	0.6	63
20	Converging miRNA functions in diverse brain disorders: A case for miR-124 and miR-126. Experimental Neurology, 2012, 235, 427-435.	2.0	89
21	Detection of Intranasally Delivered Bone Marrow-Derived Mesenchymal Stromal Cells in the Lesioned Mouse Brain: A Cautionary Report. Stem Cells International, 2011, 2011, 1-12.	1.2	17
22	MicroRNAs and deregulated gene expression networks in neurodegeneration. Brain Research, 2010, 1338, 48-57.	1.1	123
23	RNA mechanisms in CNS systems and disorders. Brain Research, 2010, 1338, 1-2.	1.1	6
24	Evidence for Gender-Specific Transcriptional Profiles of Nigral Dopamine Neurons in Parkinson Disease. PLoS ONE, 2010, 5, e8856.	1.1	113
25	Proteasome Activator Enhances Survival of Huntington's Disease Neuronal Model Cells. PLoS ONE, 2007, 2, e238.	1.1	110
26	Enhanced Yield of Neuroepithelial Precursors and Midbrain-Like Dopaminergic Neurons from Human Embryonic Stem Cells Using the Bone Morphogenic Protein Antagonist Noggin. Stem Cells, 2007, 25, 411-418.	1.4	230
27	Markers and Methods for Cell Sorting of Human Embryonic Stem Cell-Derived Neural Cell Populations. Stem Cells, 2007, 25, 2257-2268.	1.4	286
28	Immature and Neurally Differentiated Mouse Embryonic Stem Cells Do Not Express a Functional Fas/Fas Ligand System. Stem Cells, 2007, 25, 2551-2558.	1.4	25
29	Immunological Considerations in CNS Transplants. , 2007, , 305-326.		0
30	Specific MicroRNAs Modulate Embryonic Stem Cell-Derived Neurogenesis. Stem Cells, 2006, 24, 857-864.	1.4	611
31	Tailoring human embryonic stem cells for neurodegenerative disease therapy. Current Opinion in Investigational Drugs, 2006, 7, 614-8.	2.3	9
32	Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Human Molecular Genetics, 2005, 14, 1709-1725.	1.4	338
33	Stem cells may reshape the prospect of Parkinson's disease therapy. Molecular Brain Research, 2005, 134, 34-51.	2.5	55
34	Implementations of translational medicine. Journal of Translational Medicine, 2005, 3, 33.	1.8	31
35	Human Fas-ligand expression on porcine endothelial cells does not protect against xenogeneic natural killer cytotoxicity*. Xenotransplantation, 2004, 11, 43-52.	1.6	10
36	Generalized brain and skin proteasome inhibition in Huntington's disease. Annals of Neurology, 2004, 56, 319-328.	2.8	164

#	ARTICLE	IF	CITATIONS
37	Tolerance to solid organ transplants through transfer of MHC class II genes. Journal of Clinical Investigation, 2001, 107, 65-71.	3.9	70
38	Nicotinamide riboside and caffeine partially restore diminished NAD availability but not altered energy metabolism in Alzheimer's disease. Aging Cell, 0, , .	3.0	4