Elizabeth P Henske

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1426859/publications.pdf

Version: 2024-02-01

61 papers

12,671 citations

201575 27 h-index 60 g-index

66 all docs 66
docs citations

66 times ranked 27046 citing authors

#	Article	IF	Citations
1	Seventh BHD international symposium: recent scientific and clinical advancement. Oncotarget, 2022, 13, 173-181.	0.8	4
2	Modeling tuberous sclerosis with organoids. Science, 2022, 375, 382-383.	6.0	4
3	Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	156
4	ETV2 regulates PARP-1 binding protein to induce ER stress–mediated death in tuberin-deficient cells. Life Science Alliance, 2022, 5, e202201369.	1.3	2
5	Hypersensitivity to ferroptosis in chromophobe RCC is mediated by a glutathione metabolic dependency and cystine import via solute carrier family 7 member 11. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	13
6	MITF is a driver oncogene and potential therapeutic target in kidney angiomyolipoma tumors through transcriptional regulation of CYR61. Oncogene, 2021, 40, 112-126.	2.6	14
7	Therapeutic Targeting of DGKA-Mediated Macropinocytosis Leads to Phospholipid Reprogramming in Tuberous Sclerosis Complex. Cancer Research, 2021, 81, 2086-2100.	0.4	8
8	Kidney intercalated cells and the transcription factor FOXi1 drive cystogenesis in tuberous sclerosis complex. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
9	mTORC1 is a mechanosensor that regulates surfactant function and lung compliance during ventilator-induced lung injury. JCI Insight, 2021, 6, .	2.3	6
10	TSC2 regulates lysosome biogenesis via a non-canonical RAGC and TFEB-dependent mechanism. Nature Communications, 2021, 12, 4245.	5.8	52
11	Interleukin-6 mediates PSAT1 expression and serine metabolism in TSC2-deficient cells. Proceedings of the United States of America, 2021, 118, .	3.3	13
12	Renal Cell Carcinoma in Tuberous Sclerosis Complex. Genes, 2021, 12, 1585.	1.0	33
13	The TSC Complex-mTORC1 Axis: From Lysosomes to Stress Granules and Back. Frontiers in Cell and Developmental Biology, 2021, 9, 751892.	1.8	22
14	Tumour predisposition and cancer syndromes as models to study gene–environment interactions. Nature Reviews Cancer, 2020, 20, 533-549.	12.8	93
15	Celecoxib in lymphangioleiomyomatosis: results of a phase I clinical trial. European Respiratory Journal, 2020, 55, 1902370.	3.1	7
16	Mesenchymal folliculin is required for alveolar development: implications for cystic lung disease in Birt-Hogg-Dubé syndrome. Thorax, 2020, 75, 486-493.	2.7	12
17	Chromophobe renal cell carcinoma: New genetic and metabolic insights. Urologic Oncology: Seminars and Original Investigations, 2020, 38, 678-681.	0.8	4
18	Rapamycin-upregulated miR-29b promotes mTORC1-hyperactive cell growth in TSC2-deficient cells by downregulating tumor suppressor retinoic acid receptor \hat{l}^2 (RAR \hat{l}^2). Oncogene, 2019, 38, 7367-7383.	2.6	11

#	Article	IF	CITATIONS
19	Immunotherapy for Lymphangioleiomyomatosis and Tuberous Sclerosis. Chest, 2019, 156, 1062-1067.	0.4	15
20	Tumors with TSC mutations are sensitive to CDK7 inhibition through NRF2 and glutathione depletion. Journal of Experimental Medicine, 2019, 216, 2635-2652.	4.2	20
21	The Genetics of Pneumothorax. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1344-1357.	2.5	45
22	The Codon 72 <i>TP53</i> Polymorphism Contributes to TSC Tumorigenesis through the Notch–Nodal Axis. Molecular Cancer Research, 2019, 17, 1639-1651.	1.5	2
23	A genome-wide association study implicates <i>NR2F2</i> in lymphangioleiomyomatosis pathogenesis. European Respiratory Journal, 2019, 53, 1900329.	3.1	14
24	Serum endostatin levels are associated with diffusion capacity and with tuberous sclerosis-associated lymphangioleiomyomatosis. Orphanet Journal of Rare Diseases, 2019, 14, 72.	1.2	5
25	Generalised mosaicism for TSC2 mutation in isolated lymphangioleiomyomatosis. European Respiratory Journal, 2019, 54, 1900938.	3.1	5
26	The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma. Cell Reports, 2018, 23, 313-326.e5.	2.9	523
27	Familial pneumothorax: towards precision medicine. Thorax, 2018, 73, 270-276.	2.7	26
28	Emerging biomarkers of lymphangioleiomyomatosis. Expert Review of Respiratory Medicine, 2018, 12, 95-102.	1.0	22
29	TSC2-deficient tumors have evidence of T cell exhaustion and respond to anti–PD-1/anti–CTLA-4 immunotherapy. JCI Insight, 2018, 3, .	2.3	49
30	Circulating Biomarkers From the Phase 1 Trial of Sirolimus and Autophagy Inhibition for Patients With Lymphangioleiomyomatosis. Chest, 2018, 154, 1070-1082.	0.4	13
31	Vitamin D binding protein: a new biomarker of disease severity in lymphangioleiomyomatosis. European Respiratory Journal, 2018, 52, 1801886.	3.1	0
32	Renal disease in tuberous sclerosis complex: pathogenesis and therapy. Nature Reviews Nephrology, 2018, 14, 704-716.	4.1	83
33	Aberrant SYK Kinase Signaling Is Essential for Tumorigenesis Induced by TSC2 Inactivation. Cancer Research, 2017, 77, 1492-1502.	0.4	17
34	Sirolimus and Autophagy Inhibition in Lymphangioleiomyomatosis. Chest, 2017, 151, 1302-1310.	0.4	46
35	p62/SQSTM1 Cooperates with Hyperactive mTORC1 to Regulate Glutathione Production, Maintain Mitochondrial Integrity, and Promote Tumorigenesis. Cancer Research, 2017, 77, 3255-3267.	0.4	49
36	A Pan-Cancer Proteogenomic Atlas of PI3K/AKT/mTOR Pathway Alterations. Cancer Cell, 2017, 31, 820-832.e3.	7.7	433

#	Article	IF	CITATIONS
37	Human Pluripotent Stem Cell–Derived <i>TSC2</i> Haploinsufficient Smooth Muscle Cells Recapitulate Features of Lymphangioleiomyomatosis. Cancer Research, 2017, 77, 5491-5502.	0.4	29
38	New developments in the genetics and pathogenesis of tumours in tuberous sclerosis complex. Journal of Pathology, 2017, 241, 219-225.	2.1	67
39	Haploinsufficiency in tumor predisposition syndromes: altered genomic transcription in morphologically normal cells heterozygous for <i>VHL</i> or <i>TSC</i> mutation. Oncotarget, 2017, 8, 17628-17642.	0.8	11
40	Lysosomal regulation of cholesterol homeostasis in tuberous sclerosis complex is mediated <i>via </i> NPC1 and LDL-R. Oncotarget, 2017, 8, 38099-38112.	0.8	12
41	Rapamycin-induced miR-21 promotes mitochondrial homeostasis and adaptation in mTORC1 activated cells. Oncotarget, 2017, 8, 64714-64727.	0.8	18
42	Whole Exome Sequencing Identifies TSC1/TSC2 Biallelic Loss as the Primary and Sufficient Driver Event for Renal Angiomyolipoma Development. PLoS Genetics, 2016, 12, e1006242.	1.5	93
43	Advances and Future Directions for Tuberous Sclerosis Complex Research: Recommendations From the 2015 Strategic Planning Conference. Pediatric Neurology, 2016, 60, 1-12.	1.0	43
44	Evidence Supporting a Lymphatic Endothelium Origin for Angiomyolipoma, a TSC2â^' Tumor Related to Lymphangioleiomyomatosis. American Journal of Pathology, 2016, 186, 1825-1836.	1.9	24
45	Tuberous sclerosis complex. Nature Reviews Disease Primers, 2016, 2, 16035.	18.1	473
46	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
47	Mechanisms of pulmonary cyst pathogenesis in Birt–Hogg–Dube syndrome: The stretch hypothesis. Seminars in Cell and Developmental Biology, 2016, 52, 47-52.	2.3	48
48	Targeted deletion of Tsc1 causes fatal cardiomyocyte hyperplasia independently of afterload. Cardiovascular Pathology, 2015, 24, 80-93.	0.7	6
49	Tuberous Sclerosis Complex 2 Loss Increases Lysophosphatidylcholine Synthesis in Lymphangioleiomyomatosis. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 33-41.	1.4	30
50	Unjamming and cell shape in the asthmatic airwayÂepithelium. Nature Materials, 2015, 14, 1040-1048.	13.3	484
51	Tuberous sclerosis complex, mTOR, and the kidney: report of an NIDDK-sponsored workshop. American Journal of Physiology - Renal Physiology, 2014, 306, F279-F283.	1.3	17
52	Folliculin regulates cell-cell adhesion, AMPK, and mTORC1 in a cell-type-specific manner in lung-derived cells. Physiological Reports, 2014, 2, e12107.	0.7	53
53	Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. Journal of Experimental Medicine, 2014, 211, 2249-2263.	4.2	170
54	The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma. Cancer Cell, 2014, 26, 319-330.	7.7	665

#	Article	IF	Citations
55	Metabolic reprogramming in polycystic kidney disease. Nature Medicine, 2013, 19, 407-409.	15.2	32
56	Lymphangioleiomyomatosis â€" a wolf in sheep's clothing. Journal of Clinical Investigation, 2012, 122, 3807-3816.	3.9	258
57	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
58	Lymphangioleiomyomatosis. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 1210-1212.	2.5	168
59	Getting to the finish line with mTORC1-targeted therapy. Journal of Clinical Investigation, 2012, 122, 1970-1972.	3.9	2
60	Mutation in TSC2 and activation of mammalian target of rapamycin signalling pathway in renal angiomyolipoma. Lancet, The, 2003, 361, 1348-1349.	6.3	196
61	Aggressive variants of chromophobe renal cell carcinoma. Cancer, 1996, 78, 1756-1761.	2.0	100