Thierry Livache

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1425726/publications.pdf

Version: 2024-02-01

186265 206112 2,374 67 28 48 citations h-index g-index papers 67 67 67 2704 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Preparation of a DNA matrix via an electrqchemically directed copolymerization of pyrrole and oligonucleotides bearing a pyrrole group. Nucleic Acids Research, 1994, 22, 2915-2921.	14.5	199
2	Polypyrrole DNA Chip on a Silicon Device: Example of Hepatitis C Virus Genotyping. Analytical Biochemistry, 1998, 255, 188-194.	2.4	166
3	Characterization and Optimization of a Real-Time, Parallel, Label-Free, Polypyrrole-Based DNA Sensor by Surface Plasmon Resonance Imaging. Analytical Chemistry, 2000, 72, 6003-6009.	6.5	155
4	Chemical synthesis of a biologically active natural tRNA with its minor bases. Nucleic Acids Research, 1992, 20, 5159-5166.	14.5	135
5	On-chip microbial culture for the specific detection of very low levels of bacteria. Lab on A Chip, 2013, 13, 4024.	6.0	91
6	Ligands for label-free detection of whole bacteria on biosensors: A review. TrAC - Trends in Analytical Chemistry, 2016, 79, 71-79.	11.4	87
7	Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane. Nanoscale, 2015, 7, 15904-15914.	5.6	76
8	A polypyrrole protein microarray for antibody–antigen interaction studies using a label-free detection process. Analytical Biochemistry, 2005, 347, 193-200.	2.4	73
9	Polypyrrole Oligosaccharide Array and Surface Plasmon Resonance Imaging for the Measurement of Glycosaminoglycan Binding Interactions. Analytical Chemistry, 2008, 80, 3476-3482.	6.5	70
10	Polypyrrole based DNA hybridization assays: study of label free detection processes versus fluorescence on microchips. Journal of Pharmaceutical and Biomedical Analysis, 2003, 32, 687-696.	2.8	68
11	Real-time detection of lymphocytes binding on an antibody chip using SPR imaging. Lab on A Chip, 2007, 7, 1206.	6.0	67
12	Clinically Related Protein–Peptide Interactions Monitored in Real Time on Novel Peptide Chips by Surface Plasmon Resonance Imaging. Clinical Chemistry, 2006, 52, 255-262.	3.2	66
13	Highly-Selective Optoelectronic Nose Based on Surface Plasmon Resonance Imaging for Sensing Volatile Organic Compounds. Analytical Chemistry, 2018, 90, 9879-9887.	6.5	65
14	New Approach to Writing and Simultaneous Reading of Micropatterns: Â Combining Surface Plasmon Resonance Imaging with Scanning Electrochemical Microscopy (SECM). Langmuir, 2004, 20, 9236-9241.	3.5	60
15	Electroconducting polymers for the construction of DNA or peptide arrays on silicon chips. Biosensors and Bioelectronics, 1998, 13, 629-634.	10.1	59
16	Spatial resolution in prism-based surface plasmon resonance microscopy. Optics Express, 2014, 22, 22771.	3.4	53
17	Solution-Phase vs Surface-Phase Aptamer-Protein Affinity from a Label-Free Kinetic Biosensor. PLoS ONE, 2013, 8, e75419.	2.5	50
18	Electropolymerization as a Versatile Route for Immobilizing Biological Species onto Surfaces. Applied Biochemistry and Biotechnology, 2000, 89, 183-194.	2.9	46

#	Article	IF	Citations
19	Carbohydrates as New Probes for the Identification of Closely Related <i>Escherichia coli</i> Strains Using Surface Plasmon Resonance Imaging. Analytical Chemistry, 2015, 87, 1804-1811.	6.5	44
20	Versatile analysis of multiple macromolecular interactions by SPR imaging: application to p53 and DNA interaction. Oncogene, 2004, 23, 5543-5550.	5.9	42
21	Conducting polymers on microelectronic devices as tools for biological analyses. Clinica Chimica Acta, 1998, 278, 171-176.	1.1	40
22	Effects of formamide on the thermal stability of DNA duplexes on biochips. Analytical Biochemistry, 2010, 397, 132-134.	2.4	40
23	TOX4 and its binding partners recognize DNA adducts generated by platinum anticancer drugs. Archives of Biochemistry and Biophysics, 2011, 507, 296-303.	3.0	36
24	Real time monitoring of thrombin interactions with its aptamers: Insights into the sandwich complex formation. Biosensors and Bioelectronics, 2013, 40, 186-192.	10.1	36
25	Biotinylated CdSe/ZnSe nanocrystals for specific fluorescent labeling. Journal of Materials Chemistry, 2004, 14, 2638-2642.	6.7	30
26	Early detection of bacteria using SPR imaging and event counting: experiments with <i>Listeria monocytogenes </i> li>and <i>Listeria innocua </i> . RSC Advances, 2019, 9, 15554-15560.	3.6	30
27	Individual Blood ell Capture and 2D Organization on Microarrays. Small, 2009, 5, 1493-1497.	10.0	29
28	DNA-directed capture of primary cells from a complex mixture and controlled orthogonal release monitored by SPR imaging. Biosensors and Bioelectronics, 2012, 33, 10-16.	10.1	28
29	SPR imaging for label-free multiplexed analyses of DNA N-glycosylase interactions with damaged DNA duplexes. Analyst, The, 2008, 133, 1036.	3.5	27
30	Enhanced Bipolar Electrochemistry at Solid-State Micropores: Demonstration by Wireless Electrochemiluminescence Imaging. Analytical Chemistry, 2019, 91, 8900-8907.	6.5	26
31	Opto-Electronic Nose Coupled to a Silicon Micro Pre-Concentrator Device for Selective Sensing of Flavored Waters. Chemosensors, 2020, 8, 60.	3.6	26
32	Reliable chiral recognition with an optoelectronic nose. Biosensors and Bioelectronics, 2020, 159, 112183.	10.1	25
33	Polarization-Induced Local Pore-Wall Functionalization for Biosensing: From Micropore to Nanopore. Analytical Chemistry, 2012, 84, 3254-3261.	6.5	23
34	Contactless Electrofunctionalization of a Single Pore. Small, 2009, 5, 2297-2303.	10.0	22
35	Effect of Lipid Coating on the Interaction Between Silica Nanoparticles and Membranes. Journal of Biomedical Nanotechnology, 2014, 10, 519-528.	1.1	21
36	Peptide–protein microarrays and surface plasmon resonance detection: Biosensors for versatile biomolecular interaction analysis. Biosensors and Bioelectronics, 2010, 26, 1554-1559.	10.1	20

#	Article	IF	CITATIONS
37	On chip real time monitoring of B-cells hybridoma secretion of immunoglobulin. Biosensors and Bioelectronics, 2011, 26, 2728-2732.	10.1	19
38	Construction of Hybrid Bilayer Membrane (HBM) Biochips and Characterization of the Cooperative Binding between Cytochrome-c and HBM. Langmuir, 2007, 23, 6835-6842.	3.5	17
39	Highly parallel remote SPR detection of DNA hybridization by micropillar optical arrays. Analytical and Bioanalytical Chemistry, 2019, 411, 2249-2259.	3.7	14
40	SPR imaging based electronic tongue via landscape images for complex mixture analysis. Talanta, 2014, 130, 49-54.	5. 5	13
41	Opto-electrochemical nanosensor array for remote DNA detection. Analyst, The, 2011, 136, 327-331.	3.5	12
42	Optical Index Prism Sensitivity of Surface Plasmon Resonance Imaging in Gas Phase: Experiment versus Theory. Journal of Physical Chemistry C, 2020, 124, 3756-3767.	3.1	12
43	Temperature scans/cycles for the detection of low abundant DNA point mutations on microarrays. Biosensors and Bioelectronics, 2012, 31, 554-557.	10.1	11
44	Functionalization of optical nanotip arrays with an electrochemical microcantilever for multiplexed DNA detection. Lab on A Chip, 2013, 13, 2956.	6.0	11
45	Photothermal effect for localized desorption of primary lymphocytes arrayed on an antibody/DNA-based biochip. Lab on A Chip, 2014, 14, 1987.	6.0	11
46	Improvement of sensitivity of surface plasmon resonance imaging for the gas-phase detection of volatile organic compounds. Talanta, 2020, 212, 120777.	5 . 5	11
47	Experimental and Theoretical Investigations on the Adsorption of 2 -deoxyguanosine Oxidation Products at Oxidized Boron-Doped Diamond Electrodes. Analytical Chemistry, 2007, 79, 3741-3746.	6.5	10
48	Electrochemical transduction of DNA hybridization at modified electrodes by using an electroactive pyridoacridone intercalator. Analytical and Bioanalytical Chemistry, 2014, 406, 1163-1172.	3.7	10
49	Conducting Polymers for DNA Sensors and DNA Chips: from Fabrication to Molecular Detection. Perspectives in Bioanalysis, 2005, 1, 297-330.	0.3	9
50	Selective Individual Primary Cell Capture Using Locally Bio-Functionalized Micropores. PLoS ONE, 2013, 8, e57717.	2.5	9
51	Real-time gas recognition and gas unmixing in robot applications. Sensors and Actuators B: Chemical, 2021, 330, 129111.	7.8	9
52	In Situ Synthesis and Copolymerization of Oligonucleotides on Conducting Polymers. Mikrochimica Acta, 1999, 131, 3-8.	5.0	7
53	Wireless Enhanced Electrochemiluminescence at a Bipolar Microelectrode in a Solid-State Micropore. Journal of the Electrochemical Society, 2020, 167, 137509.	2.9	7
54	Design and Application of a Microarray for Fluorescence and Surface Plasmon Resonance Imaging Analysis of Peptide-Antibody Interactions. Journal of Biomedical Nanotechnology, 2006, 2, 29-35.	1.1	6

#	Article	IF	CITATIONS
55	Real-time toxicity testing of silver nanoparticles to Salmonella Enteritidis using surface plasmon resonance imaging: A proof of concept. NanoImpact, 2016, 1, 55-59.	4.5	6
56	Landscapes of Taste by a Novel Electronic Tongue for the Analysis of Complex Mixtures. Sensor Letters, 2014, 12, 1059-1064.	0.4	6
57	Electrochemically Induced Maskless Metal Deposition on Micropore Wall. Small, 2012, 8, 1345-1349.	10.0	5
58	Using a bio-inspired surface resonance plasmon electronic nose for fundamental research on human olfaction. Sensors and Actuators B: Chemical, 2022, 350, 130846.	7.8	5
59	Discrimination of spoiled beef and salmon stored under different atmospheres by an optoelectronic nose. Comparison with GC-MS measurements. Future Foods, 2022, 5, 100106.	5.4	5
60	Cell specific electrodes for neuronal network reconstruction and monitoring. Analyst, The, 2014, 139, 3281.	3.5	4
61	On the use of aptamer microarrays as a platform for the exploration of human prothrombin/thrombin conversion. Analytical Biochemistry, 2015, 473, 66-71.	2.4	4
62	Enhancing the sensitivity of plasmonic optical fiber sensors by analyzing the distribution of the optical modes intensity. Optics Express, 2020, 28, 28740.	3.4	4
63	Utilisation of a Portable Electronic Nose, NeOse Pro, to Follow the Microbial Fermentation of a Yoghurt. Food and Nutrition Sciences (Print), 2021, 12, 90-105.	0.4	3
64	Versatile Functionalization of Nanoelectrodes by Oligonucleotides via Pyrrole Electrochemistry. ChemPhysChem, 2010, 11, 3541-3546.	2.1	2
65	Integrating Multi-Functionalities Into Non-Spherical Microparticles Fabricated by Top-Down Approach. Science of Advanced Materials, 2015, 7, 1779-1784.	0.7	1
66	Contactless Bioâ€Electrofunctionalization of Planar Micropores. Advanced Materials Technologies, 2021, 6, 2001154.	5.8	0
67	Surface plasmon resonance imaging of the conversion of clustered DNA lesions into double strand breaks by Fpg protein. AIMS Materials Science, 2015, 2, 473-483.	1.4	0